Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 118(10): 2843-2855, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401657

RESUMO

The eukaryotic initiation factor 4E (eIF4E) specifically recognizes the 5' mRNA cap, a rate-limiting step in the translation initiation process. Although the 7-methylguanosine cap (MMGcap) is the most common 5' cap structure in eukaryotes, the trans-splicing process that occurs in several organism groups, including nematodes and flatworms, leads to the addition of a trimethylguanosine cap (TMGcap) to some RNA transcripts. In some helminths, eIF4E can have a dual capacity to bind both MMGcap and TMGcap. In the present work, we evaluated the distribution of eIF4E protein sequences in platyhelminths and we showed that only one gene coding for eIF4E is present in most parasitic flatworms. Based on this result, we cloned the Echinococcus granulosus cDNA sequence encoding eIF4E in Escherichia coli, expressed the recombinant eIF4E as a fusion protein to GST, and tested its ability to capture mRNAs through the 5' cap using pull-down assay and qPCR. Our results indicate that the recombinant eIF4E was able to bind preferentially 5'-capped mRNAs compared with rRNAs from total RNA preparations of E. granulosus. By qPCR, we observed an enrichment in MMG-capped mRNA compared with TMG-capped mRNAs among Eg-eIF4E-GST pull-down RNAs. Eg-eIF4E structural model using the Schistosoma mansoni eIF4E as template showed to be well preserved with only a few differences between chemically similar amino acid residues at the binding sites. These data showed that E. granulosus eIF4E can be used as a potential tool to study full-length 5'-capped mRNA, besides being a potential drug target against parasitic flatworms.


Assuntos
Echinococcus granulosus/genética , Fator de Iniciação 4E em Eucariotos/genética , Capuzes de RNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Regulação da Expressão Gênica/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Simulação de Acoplamento Molecular , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
2.
Data Brief ; 3: 113-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26217729

RESUMO

Here we provide the LC-MS/MS data from a comparative analysis of Listeria monocytogenes ATCC 7644 treated and non-treated with a sublethal concentration of nisin (10(-3) mg/mL). Protein samples were analyzed by multidimensional protein identification technology (MudPIT) approach, in an off-line configuration. The raw MS/MS data allowed the detection of 49,591 spectra which resulted in 576 protein identifications. After Scaffold validation, 179 proteins were identified with high confidence. A label-free quantitative analysis based of normalized spectral abundance factor (NSAF) was used and 13 proteins were found differentially expressed between nisin-treated and non-treated cells. Gene ontology analysis of differentially expressed proteins revealed that most of them are correlated to metabolic process, oxidative stress response mechanisms and molecular binding. A detailed analysis and discussion of these data may be found in Miyamoto et al. [1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA