Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-516351

RESUMO

Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs between these two contexts. Notable differences in humoral and cellular immune responses to primary mRNA vaccination were observed and associated with prior COVID-19 history, including in the establishment and recall of Spike-specific CD4+ T cells. It was unclear whether CD4+ T cell memory established by infection or mRNA vaccination as the first exposure to Spike was qualitatively similar. To assess whether the mechanism of initial memory T cell priming affected subsequent responses to Spike protein, 14 people who were receiving a third mRNA vaccination, referenced here as the booster, were stratified based on whether the first exposure to Spike protein was by viral infection or immunization (infection-primed or vaccine-primed). Using multimodal scRNA-seq of activation-induced marker (AIM)-reactive Spike-specific CD4+ T cells, we identified 220 differentially expressed genes between infection- and vaccine-primed patients at the post-booster time point. Infection-primed participants had greater expression of genes related to cytotoxicity and interferon signaling. Gene set enrichment analysis (GSEA) revealed enrichment for Interferon Alpha, Interferon Gamma, and Inflammatory response gene sets in Spike-specific CD4+ T cells from infection-primed individuals, whereas Spike-specific CD4+ T cells from vaccine-primed individuals had strong enrichment for proliferative pathways by GSEA. Finally, SARS-CoV-2 breakthrough infection in vaccine-primed participants resulted in subtle changes in the transcriptional landscape of Spike-specific memory CD4+ T cells relative to pre-breakthrough samples but did not recapitulate the transcriptional profile of infection-primed Spike-specific CD4+ T cells. Together, these data suggest that CD4+ T cell memory is durably imprinted by the inflammatory context of SARS-CoV-2 infection, which has implications for personalization of vaccination based on prior infection history. One Sentence SummarySARS-CoV-2 infection and mRNA vaccination prime transcriptionally distinct CD4+ T cell memory landscapes which are sustained with subsequent doses of vaccine.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277058

RESUMO

BackgroundAerosol-generating procedures increase the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among health care workers (HCWs). An effective pre-exposure prophylaxis would mitigate this risk. ObjectiveTo determine the efficacy of pre-exposure prophylactic hydroxychloroquine for the prevention of SARS-CoV-2 infection and symptomatic coronavirus 19 disease (COVID-19) among HCWs at high occupational risk of SARS-CoV-2 exposure. Methods130 HCWs in the New York University Langone Health System (NYULHS) who performed aerosol-generating procedures on patients with COVID-19 or provided bedside care for inpatients with COVID-19 or persons with suspected COVID-19 in an emergency department, for at least three shifts in a 7-day period, during the first 2020 COVID-19 wave in New York City were enrolled. Participants elected to take oral hydroxychloroquine, 600 mg on day 1 followed by 200 mg daily, or not take hydroxychloroquine for up to 90 days. Participants self-collected dried blood spots and completed digital questionnaires regarding COVID-19 symptoms, adverse events, and other COVID-19 medication use. ResultsSix participants (7.5%) seroconverted during the trial: four who took hydroxychloroquine (6.8%) and two who declined hydroxychloroquine (9.5%). All participants not taking hydroxychloroquine reported COVID-19 symptoms at seroconversion compared to one of four participants (25%) who took hydroxychloroquine. Adverse events occurred in eight participants (9.6%) on hydroxychloroquine and were mostly mild. ConclusionsThis study (ClinicalTrials.gov NCT04354870) did not demonstrate a statistically significant difference in SARS-CoV-2 seroconversion associated with hydroxychloroquine pre-exposure prophylaxis among HCWs at high risk of occupational SARS-CoV-2 exposure, although was underpowered and a high rate of hydroxychloroquine discontinuation was observed.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268752

RESUMO

ObjectiveTo determine the impact of MS disease-modifying therapies (DMTs) on the development of cellular and humoral immunity to SARS-CoV-2 infection. MethodsMS patients aged 18-60 were evaluated for anti-nucleocapsid and anti-Spike RBD antibody with electro-chemiluminescence immunoassay; antibody responses to Spike protein, RBD, N-terminal domain with multiepitope bead-based immunoassays (MBI); live virus immunofluorescence-based microneutralization assay; T-cell responses to SARS-CoV-2 Spike using TruCulture ELISA; and IL-2 and IFN{gamma} ELISpot assays. Assay results were compared by DMT class. Spearman correlation and multivariate analyses were performed to examine associations between immunologic responses and infection severity. ResultsBetween 1/6/2021 and 7/21/2021, 389 MS patients were recruited (mean age 40.3 years; 74% female; 62% non-White). Most common DMTs were ocrelizumab (OCR) - 40%; natalizumab - 17%, Sphingosine 1-phosphate receptor (S1P) modulators -12%; and 15% untreated. 177 patients (46%) had laboratory evidence of SARS-CoV-2 infection; 130 had symptomatic infection, 47 - asymptomatic. Antibody responses were markedly attenuated in OCR compared to other groups (p[≤] 0001). T-cell responses (IFN{gamma} were decreased in S1P (p=0.03), increased in natalizumab (p<0.001), and similar in other DMTs, including OCR. Cellular and humoral responses were moderately correlated in both OCR (r=0.45, p=0.0002) and non-OCR (r=0.64, p<0.0001). Immune responses did not differ by race/ethnicity. COVID-19 clinical course was mostly non-severe and similar across DMTs; 7% (9/130) were hospitalized. InterpretationDMTs had differential effects on humoral and cellular immune responses to SARS-CoV-2 infection. Immune responses did not correlate with COVID-19 clinical severity in this relatively young and non-disabled group of MS patients.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474369

RESUMO

Currently authorized vaccines for SARS-CoV-2 have been highly successful in preventing infection and lessening disease severity. The vaccines maintain effectiveness against SARS-CoV-2 Variants of Concern but the heavily mutated, highly transmissible Omicron variant poses an obstacle both to vaccine protection and monoclonal antibody therapies. Analysis of the neutralization of Omicron spike protein-pseudotyped lentiviruses showed a 26-fold relative resistance (compared to D614G) to neutralization by convalescent sera and 26-34-fold resistance to Pfizer BNT162b2 and Moderna vaccine-elicited antibodies following two immunizations. A booster immunization increased neutralizing titers against Omicron by 6-8-fold. Previous SARS-CoV-2 infection followed by vaccination resulted in the highest neutralizing titers against Omicron. Regeneron REGN10933 and REGN10987, and Lilly LY-CoV555 and LY-CoV016 monoclonal antibodies were ineffective against Omicron, while Sotrovimab was partially effective. The results highlight the benefit of a booster immunization in providing protection against Omicron but demonstrate the challenge to monoclonal antibody therapies.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-463727

RESUMO

Recently identified SARS-CoV-2 variants Mu and C.1.2 have mutations in the receptor binding domain and N- and C-terminal domains that might confer resistance to natural and vaccine-elicited antibody. Analysis with pseudotyped lentiviruses showed that viruses with the Mu and C.1.2 spike proteins were partially resistant to neutralization by antibodies in convalescent sera and those elicited by mRNA and adenoviral vector-based vaccine-elicited antibodies. Virus with the C.1.2 variant spike, which is heavily mutated, was more neutralization-resistant than that of any of variants of concern. The resistance of the C.1.2 spike was caused by a combination of the RBD mutations N501Y, Y449H and E484K and the NTD mutations. Although Mu and C.1.2 were partially resistant to neutralizing antibody, neutralizing titers elicited by mRNA vaccination remained above what is found in convalescent sera and thus are likely to remain protective against severe disease. The neutralizing titers of sera from infection-experienced BNT162b2-vaccinated individuals, those with a history of previous SARS-CoV-2 infection, were as much as 15-fold higher than those of vaccinated individuals without previous infection and effectively neutralized all of the variants. The findings demonstrate that individuals can raise a broadly neutralizing humoral response by generating a polyclonal response to multiple spike protein epitopes that should protect against current and future variants.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-454782

RESUMO

Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels against the spike antigen, its receptor-binding domain and natural and designed mutants. Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of convalescent patients. The algorithms also helped identify a set of antibody isotype-antigen datasets that contributed to the prediction, which included those targeting regions outside the receptor-binding interface of the spike protein. We applied the assay to profile samples from vaccinated, immune-compromised patients, which revealed differences in the antibody profiles between convalescent and vaccinated samples. Our approach can rapidly provide deep antibody profiles and neutralization prediction from essentially a drop of blood without the need of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be further developed for evaluating neutralizing capacity for new variants and future pathogens.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-452771

RESUMO

The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine efficacy. Here, neutralizing antibody titers elicited by mRNA-based and an adenoviral vector-based vaccine against variant pseudotyped viruses were compared. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.COV2.S-elicited antibodies from a significant fraction of vaccinated individuals were of low neutralizing titer (IC50 <50). The data underscore the importance of surveillance for breakthrough infections that result in severe COVID-19 and suggest the benefit of a second immunization following Ad26.COV2.S to increase protection against the variants.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-450959

RESUMO

The SARS-CoV-2 lambda variant (lineage C.37) was designated by the World Health Organization as a variant of interest and is currently increasing in prevalence in South American and other countries. The lambda spike protein contains novel mutations within the receptor binding domain (L452Q and F490S) that may contribute to its increased transmissibility and could result in susceptibility to re-infection or a reduction in protection provided by current vaccines. In this study, the infectivity and susceptibility of viruses with the lambda variant spike protein to neutralization by convalescent sera and vaccine-elicited antibodies was tested. Virus with the lambda spike had higher infectivity and was neutralized by convalescent sera and vaccine-elicited antibodies with a relatively minor 2.3-3.3-fold decrease in titer on average. The virus was neutralized by the Regeneron therapeutic monoclonal antibody cocktail with no loss of titer. The results suggest that vaccines in current use will remain protective against the lambda variant and that monoclonal antibody therapy will remain effective.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-444076

RESUMO

Highly transmissible SARS-CoV-2 variants recently identified in India designated B.1.617 and B.1.618 have mutations within the spike protein that may contribute to their increased transmissibility and that could potentially result in re-infection or resistance to vaccine-elicited antibody. B.1.617 encodes a spike protein with mutations L452R, E484Q, D614G and P681R while the B.1.618 spike has mutations {Delta}145-146, E484K and D614G. We generated lentiviruses pseudotyped by the variant proteins and determined their resistance to neutralization by convalescent sera, vaccine-elicited antibodies and therapeutic monoclonal antibodies. Viruses with B.1.617 and B.1.618 spike were neutralized with a 2-5-fold decrease in titer by convalescent sera and vaccine-elicited antibodies. The E484Q and E484K versions were neutralized with a 2-4-fold decrease in titer. Virus with the B.1.617 spike protein was neutralized with a 4.7-fold decrease in titer by the Regeneron monoclonal antibody cocktail as a result of the L452R mutation. The modest neutralization resistance of the variant spike proteins to vaccine elicited antibody suggests that current vaccines will remain protective against the B.1.617 and B.1.618 variants.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442873

RESUMO

High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral populations during infection. Errors made during replication that are not strongly deleterious to the virus can lead to the generation of minority variants. However, accurate detection of minority variants in viral sequence data is complicated by errors introduced during sample preparation and data analysis. We used synthetic RNA controls and simulated data to test seven variant calling tools across a range of allele frequencies and simulated coverages. We show that choice of variant caller, and use of replicate sequencing have the most significant impact on single nucleotide variant (SNV) discovery and demonstrate how both allele frequency and coverage thresholds impact both false discovery and false negative rates. We use these parameters to find minority variants in sequencing data from SARS-CoV-2 clinical specimens and provide guidance for studies of intrahost viral diversity using either single replicate data or data from technical replicates. Our study provides a framework for rigorous assessment of technical factors that impact SNV identification in viral samples and establishes heuristics that will inform and improve future studies of intrahost variation, viral diversity, and viral evolution. IMPORTANCEWhen viruses replicate inside a host, the virus replication machinery makes mistakes. Over time, these mistakes create mutations that result in a diverse population of viruses inside the host. Mutations that are neither lethal to the virus, nor strongly beneficial, can lead to minority variants that are minor members of the virus population. However, preparing samples for sequencing can also introduce errors that resemble minority variants, resulting in inclusion of false positive data if not filtered correctly. In this study, we aimed to determine the best methods for identification and quantification of these minority variants by testing the performance of seven commonly used variant calling tools. We used simulated and synthetic data to test their performance against a true set of variants, and then used these studies to inform variant identification in data from clinical SARS-CoV-2 clinical specimens. Together, analyses of our data provide extensive guidance for future studies of viral diversity and evolution.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255677

RESUMO

Both SARS-CoV-2 infection and vaccination elicit potent immune responses, but the durability and scope of immune responses remain to be elucidated. Here, we performed multimodal single- cell profiling of peripheral blood of patients with acute COVID-19 and healthy volunteers before and after receiving the SARS-CoV-2 BNT162b2 mRNA vaccine to compare the immune responses elicited by the virus and by the vaccine. Phenotypic and transcriptional profiling of immune cells, coupled with reconstruction of B and T cell receptor repertoires, enabled us to characterize and compare the host responses to the virus and to defined viral antigens. In COVID-19 patients, immune responses were characterized by a highly augmented interferon response which was largely absent in vaccine recipients. Increased interferon signaling likely contributed to the dramatic upregulation of cytotoxic genes in the peripheral T cells and innate- like lymphocytes observed in COVID-19 patients. Analysis of B and T cell repertoires revealed that while the majority of clonal lymphocytes in COVID-19 patients were effector cells, in vaccine recipients clonal expansion was primarily restricted to circulating memory cells. Taken together, our analysis of immune responses to the mRNA vaccine reveals that despite the lack of dramatic inflammation observed during infection, the vaccine elicits a robust adaptive immune response.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436620

RESUMO

DNA sequence analysis recently identified the novel SARS-CoV-2 variant B.1.526 that is spreading at an alarming rate in the New York City area. Two versions of the variant were identified, both with the prevalent D614G mutation in the spike protein together with four novel point mutations and with an E484K or S477N mutation in the receptor binding domain, raising concerns of possible resistance to vaccine-elicited and therapeutic antibodies. We report that convalescent sera and vaccine-elicited antibodies retain full neutralizing titer against the S477N B.1.526 variant and neutralize the E484K version with a modest 3.5-fold decrease in titer as compared to D614G. The E484K version was neutralized with a 12-fold decrease in titer by the REGN10933 monoclonal antibody but the combination cocktail with REGN10987 was fully active. The findings suggest that current vaccines and therapeutic monoclonal antibodies will remain protective against the B.1.526 variants. The findings further support the value of wide-spread vaccination.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-252353

RESUMO

Understanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Here, we determine the ability of sera from 101 recovered healthcare workers to neutralize both authentic SARS-CoV-2 and SARS-CoV-2 pseudotyped virus and address their antibody titers against SARS-CoV-2 nucleoprotein and spike receptor-binding domain. Interestingly, the majority of individuals have low neutralization capacity and only 6% of the healthcare workers showed high neutralizing titers against both authentic SARS-CoV-2 virus and the pseudotyped virus. We found the antibody response to SARS-CoV-2 infection generates antigen-specific isotypes as well as a diverse combination of antibody isotypes, with high titers of IgG, IgM and IgA against both antigens correlating with neutralization capacity. Importantly, we found that neutralization correlated with antibody titers as quantified by ELISA. This suggests that an ELISA assay can be used to determine seroneutralization potential. Altogether, our work provides a snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides evidence that possessing multiple antibody isotypes may play an important role in SARS-CoV-2 neutralization.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20064931

RESUMO

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...