Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535560

RESUMO

It is controversial how useful bioassays are for identifying the in vivo toxicity of hazardous environmental exposures. In this study, fruiting bodies of forest mushrooms (n = 46), indoor mold colonies (n = 412), fungal secondary metabolites (n = 18), xenobiotic chemicals such as biocides and detergents (n = 6), and methanol extracts of indoor dusts from urban buildings (n = 26) were screened with two different bioactivity assays: boar sperm motility inhibition (BSMI) and inhibition of cell proliferation (ICP) tests. For the forest mushrooms, the toxicity testing result was positive for 100% of poisonous-classified species, 69% of non-edible-classified species, and 18% of edible-classified species. Colonies of 21 isolates of Ascomycota mold fungal species previously isolated from water-damaged buildings proved to be toxic in the tests. Out of the fungal metabolites and xenobiotic chemicals, 94% and 100% were toxic, respectively. Out of the indoor dusts from moldy-classified houses (n = 12) and from dry, mold-free houses (n = 14), 50% and 57% were toxic, respectively. The bioassay tests, however, could not differentiate the samples from indoor dusts of moldy-classified buildings from those from the mold-free buildings. Xenobiotic chemicals and indoor dusts were more toxic in the BSMI assay than in the ICP assay, whereas the opposite results were obtained with the Ascomycota mold colonies and fungal secondary metabolites. The tests recognized unknown methanol-soluble thermoresistant substances in indoor settled dusts. Toxic indoor dusts may indicate a harmful exposure, regardless of whether the toxicity is due to xenobiotic chemicals or microbial metabolites.

2.
Life (Basel) ; 13(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137889

RESUMO

We previously reported on a novel peptaibol, named Tripleurin XIIc (TPN), an 18-residue long sequence produced by the fungus Trichoderma pleuroti. We elucidated its 3D structure via classical and accelerated molecular dynamics simulation (aMD) methods and reported the folding dynamics of TPN in water and chloroform solvents. Peptaibols, in general, are insoluble in water, as they are amphipathic and may prefer hydrophobic environments like transmembrane regions. In this study, we attempted to use aMD simulations to model an all-atom bacterial membrane system while placing a TPN molecule in its vicinity. The results highlighted that TPN was able to introduce some disorder into the membrane and caused lipid clustering. It could also enter the transmembrane region from the water-bilayer interface. The structural dynamics of TPN in the transmembrane region revealed a single energetically stable conformation similar to the one obtained from water and chloroform solvent simulations reported by us previously. However, this linear structure was found to be at the local energy minimum (stable) in water but at a metastable intermediate state (higher energy) in chloroform. Therefore, it could be said that the water solvent can be successfully used for folding simulations of peptaibols.

3.
Comput Struct Biotechnol J ; 21: 1860-1873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915379

RESUMO

Integrated disease management and plant protection have been discussed with much fervor in the past decade due to the rising environmental concerns of using industrially produced pesticides. Members of the genus Trichoderma are a subject of considerable research today due to their several properties as biocontrol agents. In our study, the peptaibol production of Trichoderma longibrachiatum SZMC 1775, T. longibrachiatum f. bissettii SZMC 12546, T. reesei SZMC 22616, T. reesei SZMC 22614, T. saturnisporum SZMC 22606 and T. effusum SZMC 22611 were investigated to elucidate structure-activity relationships (SARs) between the properties of peptaibols and their 3D structures. The effects of peptaibol mixtures obtained from every Trichoderma strain were examined against nine commonly known bacteria. The lowest minimum inhibitory concentrations (MIC, mg ml-1) were exerted by T. longibrachiatum f. bissettii SZMC 12546 against Gram-positive bacteria, which was also able to inhibit the plant pathogenic Gram-negative Rhizobium radiobacter. Accelerated molecular dynamics (aMD) simulations were performed in aqueous solvent to explore the folding dynamics of 12 selected peptaibol sequences. The most characteristic difference between the peptaibols from group A and B relies in the 'Gly-Leu-Aib-Pro' and 'Gly-Aib-Aib-Pro' motifs ('Aib' stands for α-aminoisobutyric acid), which imparted a significant effect on the folding dynamics in water and might be correlated with their expressed bioactivity. In our aMD simulation experiments, Group A peptaibols showed more restricted folding dynamics with well-folded helical conformations as the most stable representative structures. This structural stability and dynamics may contribute to their bioactivity against the selected bacterial species.

4.
Front Plant Sci ; 13: 1034237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518497

RESUMO

The utilization of microorganisms with biocontrol activity against fungal and bacterial pathogens of plants is recognized as a promising, effective, and environment-friendly strategy to protect agricultural crops. We report the glyphosate-tolerant Pseudomonas resinovorans SZMC 25872 isolate as a novel strain with antagonistic potential towards the plant pathogenic bacterium Agrobacterium tumefaciens. In our studies, the growth of the P. resinovorans SZMC 25872 and A. tumefaciens SZMC 14557 isolates in the presence of 74 different carbon sources, and the effect of 11 carbon sources utilized by both strains on the biocontrol efficacy was examined. Seven variations of media with different carbon sources were selected for the assays to observe the biocontrol potential of the P. resinovorans strain. Also, 50% concentrations of the cell-free culture filtrates (CCF) obtained from medium amended with L-alanine or succinic acid as sole carbon source were found to be effective for the growth suppression of A. tumefaciens by 83.03 and 56.80%, respectively. The effect of 7 media on siderophore amount and the activity of extracellular trypsin- and chymotrypsin-like proteases, as well as esterases were also evaluated. Significant positive correlation was found between the siderophore amount and the percentage of inhibition, and the inhibitory effect of the CCFs obtained from medium amended with succinic acid was eliminated in the presence of an additional iron source, suggesting that siderophores produced by P. resinovorans play an important role in its antagonistic potential. The metabolic profile analysis of the P. resinovorans SZMC 25872 strain, performed by high performance liquid chromatography - high resolution mass spectrometry (HPLC-HRMS), has identified several previously not reported metabolites that might play role in the antagonistic effect against A. tumefaciens. Based on our findings we suggest that the possible inhibition modes of A. tumefaciens SZMC 14557 by P. resinovorans SZMC 25872 include siderophore-mediated suppression, extracellular enzyme activities and novel bioactive metabolites.

5.
Pathogens ; 10(7)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34357993

RESUMO

Occupants may complain about indoor air quality in closed spaces where the officially approved standard methods for indoor air quality risk assessment fail to reveal the cause of the problem. This study describes a rare genus not previously detected in Finnish buildings, Acrostalagmus, and its species A. luteoalbus as the major constituents of the mixed microbiota in the wet cork liner from an outdoor wall. Representatives of the genus were also present in the settled dust in offices where occupants suffered from symptoms related to the indoor air. One strain, POB8, was identified as A. luteoalbus by ITS sequencing. The strain produced the immunosuppressive and cytotoxic melinacidins II, III, and IV, as evidenced by mass spectrometry analysis. In addition, the classical toxigenic species indicating water damage, mycoparasitic Trichoderma, Aspergillus section Versicolores, Aspergillus section Circumdati, Aspergillus section Nigri, and Chaetomium spp., were detected in the wet outdoor wall and settled dust from the problematic rooms. The offices exhibited no visible signs of microbial growth, and the airborne load of microbial conidia was too low to explain the reported symptoms. In conclusion, we suggest the possible migration of microbial bioactive metabolites from the wet outdoor wall into indoor spaces as a plausible explanation for the reported complaints.

8.
Biomolecules ; 10(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392805

RESUMO

Trichoderma species are widely used as biofungicides for the control of fungal plant pathogens. Several studies have been performed to identify the main genes and compounds involved in Trichoderma-plant-microbial pathogen cross-talks. However, there is not much information about the exact mechanism of this profitable interaction. Peptaibols secreted mainly by Trichoderma species are linear, 5-20 amino acid residue long, non-ribosomally synthesized peptides rich in α-amino isobutyric acid, which seem to be effective in Trichoderma-plant pathogenic fungus interactions. In the present study, reversed phase (RP) high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) mass spectrometry (MS) was used to detect peptaibol profiles of Trichoderma strains during interactions with fungal plant pathogens. MS investigations of the crude extracts deriving from in vitro confrontations of Trichodermaasperellum and T.longibrachiatum with different plant pathogenic fungi (Fusariummoniliforme, F.culmorum, F.graminearum, F.oxysporum species complex, Alternariasolani and Rhizoctoniasolani) were performed to get a better insight into the role of these non-ribosomal antimicrobial peptides. The results revealed an increase in the total amount of peptaibols produced during the interactions, as well as some differences in the peptaibol profiles between the confrontational and control tests. Detection of the expression level of the peptaibol synthetase tex1 by qRT-PCR showed a significant increase in T.asperellum/R.solani interaction in comparison to the control. In conclusion, the interaction with plant pathogens highly influenced the peptaibol production of the examined Trichoderma strains.


Assuntos
Antibiose , Peptaibols/metabolismo , Trichoderma/metabolismo , Alternaria/efeitos dos fármacos , Alternaria/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/fisiologia , Peptaibols/química , Peptaibols/toxicidade , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/fisiologia , Trichoderma/fisiologia
9.
Toxins (Basel) ; 11(12)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766362

RESUMO

The occurrence and toxin production of the opportunistic pathogen Aspergillus calidoustus in Finnish buildings is not well documented in the literature. We tracked and identified four A. calidoustus colonies cultivated from indoor settled dusts and revealed the biological activities of crude biomass extracts. The toxic substances were identified as 6-epi-ophiobolin K, ophiobolin K, and ophiobolin G by high-performance liquid chromatography-mass spectrometry (HPLC-MS) based on chromatographic and mass spectrometry data (MS and MS/MS) on the crude extract of A. calidoustus strain MH34. A total of 29 fungal colonies collected from settled dust in an office room reported for indoor-air-related illnesses were screened for toxins that inhibited boar sperm motility in the BSMI (boar sperm motility inhibiting) assay and cell proliferation in the ICP (inhibition of cell proliferation) assays with PK-15 cells. Out of the 27 colonies tested as toxic, 12 colonies exhibiting conidiophores representative of the genera Chaetomium, Penicillium, and Paecilomyces were excluded from the study, while 13 colonies exhibited Aspergillus-like conidiophores. Biomass suspensions of these colonies were divided into two categories: Category 1 colonies (n = 4), toxic in the BSMI assay and the ICP assays, emitted blue fluorescence and grew at 37 °C; Category 2 colonies (n = 9), only toxic in the ICP assay, emitted orange fluorescence and exhibited limited or no growth at 37 °C. Colonies in Category 1 were pure-cultured, and the strains were named as MH4, MH21, MH34, MH36. Strain MH34 was identified as A. calidoustus by the internal transcribed spacer (ITS) sequences. Ethanol-soluble dry substances extracted from the biomass of the pure cultures exhibited a toxicological profile in the BSMI assay, SMID (sperm membrane integrity damage) assay, and ICP assay similar to that exhibited by pure ophiobolin A. Overall, the viable conidia of A. calidoustus in indoor settled dusts deserve attention when potentially hazardous mold species are monitored.


Assuntos
Aspergillus/metabolismo , Fungos/química , Micotoxinas/farmacologia , Sesterterpenos/farmacologia , Animais , Aspergillus/química , Bioensaio , Biomassa , Cromatografia Líquida de Alta Pressão , Poeira/análise , Finlândia , Masculino , Espectrometria de Massas , Micotoxinas/isolamento & purificação , Sesterterpenos/isolamento & purificação , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Suínos , Espectrometria de Massas em Tandem
10.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480404

RESUMO

The use of enhanced sampling molecular dynamics simulations to facilitate the folding of proteins is a relatively new approach which has quickly gained momentum in recent years. Accelerated molecular dynamics (aMD) can elucidate the dynamic path from the unfolded state to the near-native state, "flattened" by introducing a non-negative boost to the potential. Alamethicin F30/3 (Alm F30/3), chosen in this study, belongs to the class of peptaibols that are 7-20 residue long, non-ribosomally synthesized, amphipathic molecules that show interesting membrane perturbing activity. The recent studies undertaken on the Alm molecules and their transmembrane channels have been reviewed. Three consecutive simulations of ~900 ns each were carried out where N-terminal folding could be observed within the first 100 ns, while C-terminal folding could only be achieved almost after 800 ns. It took ~1 µs to attain the near-native conformation with stronger potential boost which may take several µs worth of classical MD to produce the same results. The Alm F30/3 hexamer channel was also simulated in an E. coli mimicking membrane under an external electric field that correlates with previous experiments. It can be concluded that aMD simulation techniques are suited to elucidate peptaibol structures and to understand their folding dynamics.


Assuntos
Simulação de Dinâmica Molecular , Peptaibols/química , Peptaibols/metabolismo , Dobramento de Proteína , Bicamadas Lipídicas/química , Análise de Componente Principal , Eletricidade Estática , Termodinâmica , Água/química
11.
Fungal Biol ; 123(9): 650-659, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31416584

RESUMO

Washing machines (WMs) are convenient places for fungal colonization. This study is focused on fungal diversity of WMs, and investigates relationships between habits of WM users and colonising species. Housekeeping conditions and habits were assessed in Hungary with a questionnaire. Several fungal species were identified by microscopy and sequence analysis of diagnostic loci. Based on the results, 32 % of the sampled WMs were highly polluted with various species of fungi. Forty six percent of them were colonised also by opportunistically human pathogenic species. In total, 32 yeast and 39 filamentous fungal strains were isolated. Growth tests were conducted with five selected taxa (Cutaneotrichosporon dermatis, Cystobasidium slooffiae, Meyerozyma guilliermondii, Candida parapsilosis and the Fusarium oxysporum species complex (FOSC)) to ascertain their tolerance ranges. None of the examined isolates were able to grow >50 °C, 4.10 < pH < 10.88. FOSC could grow at high salinity. More species were detected in WMs operated in rooms without heating systems (p = 0.0025). The number of species was higher in WMs located in the kitchen than the ones kept in bathroom or in other rooms (p = 0.0205). WMs may serve as a reservoir of pathogenic fungi, the presence of which may depend on the usage of these devices.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Utensílios Domésticos , Contaminação de Equipamentos/estatística & dados numéricos , Fungos/genética , Fungos/crescimento & desenvolvimento , Utensílios Domésticos/estatística & dados numéricos , Filogenia
12.
Front Microbiol ; 10: 1434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293557

RESUMO

This study examined the structural diversity and bioactivity of peptaibol compounds produced by species from the phylogenetically separated Longibrachiatum Clade of the filamentous fungal genus Trichoderma, which contains several biotechnologically, agriculturally and clinically important species. HPLC-ESI-MS investigations of crude extracts from 17 species of the Longibrachiatum Clade (T. aethiopicum, T. andinense, T. capillare, T. citrinoviride, T. effusum, T. flagellatum, T. ghanense, T. konilangbra, T. longibrachiatum, T. novae-zelandiae, T. pinnatum, T. parareesei, T. pseudokoningii, T. reesei, T. saturnisporum, T. sinensis, and T. orientale) revealed several new and recurrent 20-residue peptaibols related to trichobrachins, paracelsins, suzukacillins, saturnisporins, trichoaureocins, trichocellins, longibrachins, hyporientalins, trichokonins, trilongins, metanicins, trichosporins, gliodeliquescins, alamethicins and hypophellins, as well as eight 19-residue sequences from a new subfamily of peptaibols named brevicelsins. Non-ribosomal peptide synthetase genes were mined from the available genome sequences of the Longibrachiatum Clade. Their annotation and product prediction were performed in silico and revealed full agreement in 11 out of 20 positions regarding the amino acids predicted based on the signature sequences and the detected amino acids incorporated. Molecular dynamics simulations were performed for structural characterization of four selected peptaibol sequences: paracelsins B, H and their 19-residue counterparts brevicelsins I and IV. Loss of position R6 in brevicelsins resulted in smaller helical structures with higher atomic fluctuation for every residue than the structures formed by paracelsins. We observed the formation of highly bent, almost hairpin-like, helical structures throughout the trajectory, along with linear conformation. Bioactivity tests were performed on the purified peptaibol extract of T. reesei on clinically and phytopathologically important filamentous fungi, mammalian cells, and Arabidopsis thaliana seedlings. Porcine kidney cells and boar spermatozoa proved to be sensitive to the purified peptaibol extract. Peptaibol concentrations ≥0.3 mg ml-1 deterred the growth of A. thaliana. However, negative effects to plants were not detected at concentrations below 0.1 mg ml-1, which could still inhibit plant pathogenic filamentous fungi, suggesting that those peptaibols reported here may have applications for plant protection.

13.
Molecules ; 24(2)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669493

RESUMO

Peptaibols are a special class of fungal peptides with an acetylated N-terminus and a C-terminal 1,2-amino alcohol along with non-standard amino acid residues. New peptaibols named tripleurins were recently identified from a strain of the filamentous fungal species Trichoderma pleuroti, which is known to cause green mould disease on cultivated oyster mushrooms. To understand the mode of action of these peptaibols, the three-dimensional structure of tripleurin (TPN) XIIc, an 18-mer peptide, was elucidated using an enhanced sampling method, accelerated MD, in water and chloroform solvents. Non-standard residues were parameterized by the Restrained Electrostatic Potential (RESP) charge fitting method. The dihedral distribution indicated towards a right-handed helical formation for TPN XIIc in both solvents. Dihedral angle based principal component analysis revealed a propensity for a slightly bent, helical folded conformation in water solvent, while two distinct conformations were revealed in chloroform: One that folds into highly bent helical structure that resembles a beta-hairpin and another with an almost straight peptide backbone appearing as a rare energy barrier crossing event. The hinge-like movement of the terminals was also observed and is speculated to be functionally relevant. The convergence and efficient sampling is addressed using Cartesian PCA and Kullback-Leibler divergence methods.


Assuntos
Simulação de Dinâmica Molecular , Peptaibols/química , Dobramento de Proteína , Solventes/química , Trichoderma/química , Sequência de Aminoácidos , Aminoácidos/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Análise de Componente Principal , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica , Água/química
14.
Toxins (Basel) ; 10(11)2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30413106

RESUMO

A novel, objective, and rapid computed motility inhibition (CMI) assay was developed to identify and assess sublethal injury in toxin-exposed boar spermatozoa and compared with a subjective visual motility inhibition (VMI) assay. The CMI values were calculated from digital micrographic videos using a custom MATLAB® script by contrasting the motility index values of each experiment with those of the background and control experiments. Following a comparison of the CMI and VMI assays results, it was determined that their agreement depended on the shape of the dose-response curve. Toxins that exhibited a steep slope were indicative of good agreement between the assays. Those depicted by a gentle decline in the slope of the dose-response curve, the CMI assay were shown to be two times more sensitive than the VMI assay. The CMI assay was highly sensitive to the inhibition of mitochondrial function and glucose transport activity by sublethal doses of toxins and to disruption of cellular cation homeostasis by carrier ionophoric toxins, when compared to the cytotoxicity and lethal toxicity assays (i.e., that evaluated the inhibition of cell proliferation in somatic cell lines (FL, PK-15, and MNA cells)) and disruption to spermatozoa membrane integrity. The CMI assay recognized subtle sublethal toxicity changes in metabolism, manifested as a decrease in boar spermatozoa motility. Thus, it was feasible to effectively compare the objectively-measured numerical values for motility inhibition using the CMI assay against those reflecting lethal damage in the spermatozoa cells and somatic cell lines using a cytotoxicity assay.


Assuntos
Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testes de Toxicidade/métodos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Animais , Bactérias , Técnicas Biossensoriais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/toxicidade , Gatos , Linhagem Celular , Fungos , Masculino , Camundongos , Dicromato de Potássio/toxicidade , Espermatozoides/fisiologia , Suínos , Toxinas Biológicas/toxicidade , Triclosan/toxicidade
15.
Microorganisms ; 6(3)2018 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103563

RESUMO

Trichoderma koningiopsis and T. gamsii belong to clade Viride of Trichoderma, the largest and most diverse group of this genus. They produce a wide range of bioactive secondary metabolites, including peptaibols with antibacterial, antifungal, and antiviral properties. The unusual amino acid residues of peptaibols, i.e., α-aminoisobutyric acid (Aib), isovaline (Iva), and the C-terminal 1,2-amino alcohol make them unique among peptides. In this study, the peptaibiomes of T. koningiopsis and T. gamsii were investigated by HPLC-ESI-MS. The examined strains appeared to produce 19-residue peptaibols, most of which are unknown from literature, but their amino acid sequences are similar to those of trikoningins, tricholongins, trichostrigocins, trichorzianins, and trichorzins. A new group of peptaibols detected in T. koningiopsis are described here under the name "Koningiopsin". Trikoningin KA V, the closest peptaibol compound to the peptaibols produced by these two strains, was selected for structural investigation by short MD simulation, which revealed that many residues show high preference for left handed helix formation. The bioactivity of the peptaibol mixtures produced by T. koningiopsis and T. gamsii was tested on agar plates against bacteria, yeasts, and filamentous fungi. The results revealed characteristic differences in bioactivities towards the different groups of target microorganisms, which can be explained with the differences in their cell wall structures.

16.
Artigo em Inglês | MEDLINE | ID: mdl-29976864

RESUMO

Ventilation system design and operation may significantly affect indoor air quality (IAQ). The aims of this case study were to investigate the functionality of a supply air fan-assisted hybrid ventilation system in a newly built school building with reported IAQ problems and to determine the effects of ventilation improvement on measured and perceived IAQ. The ventilation system function was researched simultaneously with IAQ measurements, with an analysis of total volatile organic compounds (TVOC), single volatile organic compounds (VOCs), and indoor mycobiota, and with questionnaires about perceived IAQ. At the baseline, an operational error of the ventilation system was found, which prevented the air from coming into the classrooms, except for short periods of high carbon dioxide (CO2) concentrations. After the ventilation operation was improved, a significant change in indoor mycobiota was found; the dominant, opportunistic human pathogenic species Trichoderma citrinoviride found in settled dust in the classroom before the improvement was no longer detected. In addition, the concentrations of CO2, TVOC, and some single VOCs, especially toluene and decamethylcyclopentasiloxane, decreased. The analysis of the questionnaire results indicated that the perceptions of unpleasant odors and stuffy air decreased, although a statistically significant improvement in perceived IAQ was not observed. The results provided evidence that the properly controlled hybrid ventilation system operating in mechanical supply mode provided adequate ventilation and was effective in decreasing the concentrations of some indoor-generated pollutants. With simple ventilation adjustments, microbiological exposure from building structures might be prevented.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise , Instituições Acadêmicas , Ventilação/normas , Microbiologia do Ar/normas , Criança , Monitoramento Ambiental , Humanos , Trichoderma/isolamento & purificação , Ventilação/instrumentação
17.
Artigo em Inglês | MEDLINE | ID: mdl-29385772

RESUMO

This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants' symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study's aim was to determine whether a positive pressure of 5-7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants' questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM2.5) decreased, and occupants' negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Instituições Acadêmicas , Ventilação/estatística & dados numéricos , Microbiologia do Ar , Poluentes Atmosféricos/análise , Humanos , Tamanho da Partícula , Material Particulado/análise , Inquéritos e Questionários , Ventilação/métodos , Compostos Orgânicos Voláteis/análise
18.
Chem Biodivers ; 14(6)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28261948

RESUMO

Certain Trichoderma species are causing serious losses in mushroom production worldwide. Trichoderma aggressivum and Trichoderma pleuroti are among the major causal agents of the green mould diseases affecting Agaricus bisporus and Pleurotus ostreatus, respectively. The genus Trichoderma is well-known for the production of bioactive secondary metabolites, including peptaibols, which are short, linear peptides containing unusual amino acid residues and being synthesised via non-ribosomal peptide synthetases (NRPSs). The aim of this study was to get more insight into the peptaibol production of T. aggressivum and T. pleuroti. HPLC/MS-based methods revealed the production of peptaibols closely related to hypomurocins B by T. aggressivum, while tripleurins representing a new group of 18-residue peptaibols were identified in T. pleuroti. Putative NRPS genes enabling the biosynthesis of the detected peptaibols could be found in the genomes of both Trichoderma species. In vitro experiments revealed that peptaibols are potential growth inhibitors of mushroom mycelia, and that the host mushrooms may have an influence on the peptaibol profiles of green mould agents.


Assuntos
Agaricales/crescimento & desenvolvimento , Peptaibols/biossíntese , Trichoderma/metabolismo , Agaricales/efeitos dos fármacos , Agaricus , Genes Fúngicos , Genoma Fúngico , Inibidores do Crescimento , Micoses , Peptaibols/genética , Peptaibols/toxicidade , Pleurotus , Trichoderma/genética , Trichoderma/patogenicidade
19.
Acta Biol Hung ; 67(4): 431-441, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28000507

RESUMO

Five Iranian Trichoderma isolates from species T. viride, T. viridescens, T. asperellum, T. longibrachiatum and T. citrinoviride - selected from the Fungal Collection of the Bu Ali Sina University, Hamedan, Iran - were investigated for their peptaibol production. All examined isolates showed remarkable antibacterial activities during the screening of their extracts for peptaibol content with a Micrococcus luteus test culture. HPLC-ESI-IT MS was used for identification and elucidation of the amino acid sequences of peptaibols. The detected peptaibol compounds contain 20 or 18 amino acid residues and belong to the trichobrachin and trichotoxin groups of peptaibols, respectively. T. longibrachiatum and T. citrinoviride produced trichobrachins, while trichotoxins could be detected in T. viride, T. viridescens and T. asperellum. Out of 37 sequences detetermined, 26 proved to be new, yet undescribed compounds, while others were identified as previously reported trichotoxins (trichotoxin A-50s and T5D2) and trichobrachins (longibrachins AI, AII, AIII, BII and BIII). Compounds within the two groups of detected peptaibols differed from each other only by a single or just a few amino acid changes.


Assuntos
Peptaibols/metabolismo , Trichoderma/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Cromatografia Líquida de Alta Pressão , Irã (Geográfico) , Micrococcus luteus/efeitos dos fármacos , Peptaibols/farmacologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...