Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(3): 737-745, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37755415

RESUMO

Red leaf blotch (RLB) of almond, caused by the ascomycete Polystigma amygdalinum, is a severe foliar disease endemic in the Mediterranean Basin and Middle East. Airborne ascospores of P. amygdalinum were monitored from 2019 to 2021 in two almond orchards in Lleida, Spain, and a Bayesian beta regression was used to model its seasonal dynamics. The selected model incorporated accumulated degree-days (ADD), ADD considering both vapor pressure deficit and rainfall as fixed effects, and a random effect for the year and location. The performance of the model was evaluated in 2022 to optimize RLB fungicide programs by comparing the use of model predictions and action thresholds with the standard program. Two variants were additionally considered in each program to set the frequency between applications, based on (i) a fixed frequency of 21 days or (ii) specific meteorological criteria (spraying within 7 days after rainfalls greater than 10 mm, with daily mean temperatures between 10 and 20°C, and with a minimum frequency of 21 days between applications). Programs were evaluated in terms of RLB incidence and number of applications. The program based on the model with periodic fungicide applications was similarly effective as the standard program, resulting only in a 2.6% higher RLB incidence but with fewer applications (three to four, compared with seven in the standard program). When setting the frequency between applications by using the meteorological criteria, a higher reduction in the number of applications (two to three) was observed, while RLB incidence increased by roughly 16% in both programs. Therefore, the model developed in this study may represent a valuable tool toward a more sustainable fungicide schedule for the control of almond RLB in northeast Spain.


Assuntos
Fungicidas Industriais , Phyllachorales , Prunus dulcis , Fungicidas Industriais/farmacologia , Teorema de Bayes , Folhas de Planta
2.
Hortic Res ; 7(1): 175, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328431

RESUMO

Powdery mildew is one of the major diseases of peach (Prunus persica), caused by the ascomycete Podosphaera pannosa. Currently, it is controlled through calendar-based fungicide treatments starting at petal fall, but an alternative is to develop resistant peach varieties. Previous studies mapped a resistance gene (Vr3) in interspecific populations between almond ('Texas') and peach ('Earlygold'). To obtain molecular markers highly linked to Vr3 and to reduce the number of candidate genes, we fine-mapped Vr3 to a genomic region of 270 kb with 27 annotated genes. To find evidence supporting one of these positional candidate genes as being responsible of Vr3, we analyzed the polymorphisms of the resequences of both parents and used near-isogenic lines (NILs) for expression analysis of the positional candidate genes in symptomatic or asymptomatic leaves. Genes differentially expressed between resistant and susceptible individuals were annotated as a Disease Resistance Protein RGA2 (Prupe2G111700) or an Eceriferum 1 protein involved in epicuticular wax biosynthesis (Prupe2G112800). Only Prupe2G111700 contained a variant predicted to have a disruptive effect on the encoded protein, and was overexpressed in both heterozygous and homozygous individuals containing the Vr3 almond allele, compared with susceptible individuals. This information was also useful to identify and validate molecular markers tightly linked and flanking Vr3. In addition, the NILs used in this work will facilitate the introgression of this gene into peach elite materials, alone or pyramided with other known resistance genes such as peach powdery mildew resistance gene Vr2.

3.
Plant Dis ; 104(9): 2418-2425, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32631199

RESUMO

The incidence of peach powdery mildew (PPM) on fruit was monitored in commercial peach orchards to i) describe the disease progress in relation to several environmental parameters and ii) establish an operating threshold to initiate a fungicide spray program based on accumulated degree-day (ADD) data. A beta-regression model for disease incidence showed a substantial contribution of the random effects orchard and year, whereas relevant fixed effects corresponded to ADD, wetness duration, and ADD considering vapor pressure deficit and rain. When beta-regression models were fitted for each orchard and year considering only ADD, disease onset was observed at 242 ± 13 ADD and symptoms did not develop further after 484 ± 42 ADD. An operating threshold to initiate fungicide applications was established at 220 ADD, coinciding with a PPM incidence in fruit around 0.05. A validation was further conducted by comparing PPM incidence in i) a standard, calendar-based program, ii) a program with applications initiated at 220 ADD, and iii) a nontreated control. A statistically relevant reduction in disease incidence in fruit was obtained with both fungicide programs, from 0.244 recorded in the control to 0.073 with the 220-ADD alert program, and 0.049 with the standard program. The 220-ADD alert program resulted in 33% reduction in fungicide applications.


Assuntos
Ascomicetos , Fungicidas Industriais , Prunus persica , Doenças das Plantas , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...