Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroanat ; 17: 1098352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999169

RESUMO

The dorsal (DLL), intermediate (ILL), and ventral (VLL) lateral lemniscus nuclei are relay centers in the central auditory pathway of the brainstem, commonly referred to as the lateral lemniscus nuclei (LLN). The LLN are situated in the prepontine and pontine hindbrain, from rhombomeres 1 to 4, extending from the more rostral DLL to the caudal VLL, with the ILL lying in between. These nuclei can be distinguished morphologically and by topological and connectivity criteria, and here, we set out to further characterize the molecular nature of each LLN. We searched in situ hybridization studies in the Allen Mouse Brain Atlas for genes differentially expressed along the rostrocaudal axis of the brainstem, identifying 36 genes from diverse functional families expressed in the LLN. Available information in the databases indicated that 7 of these 36 genes are either associated with or potentially related to hearing disorders. In conclusion, the LLN are characterized by specific molecular profiles that reflect their rostrocaudal organization into the three constituent nuclei. This molecular regionalization may be involved in the etiology of some hearing disorders, in accordance with previous functional studies of these genes.

2.
Front Neuroanat ; 15: 785840, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955765

RESUMO

The trigeminal column is a hindbrain structure formed by second order sensory neurons that receive afferences from trigeminal primary (ganglionic) nerve fibers. Classical studies subdivide it into the principal sensory trigeminal nucleus located next to the pontine nerve root, and the spinal trigeminal nucleus which in turn consists of oral, interpolar and caudal subnuclei. On the other hand, according to the prosomeric model, this column would be subdivided into segmental units derived from respective rhombomeres. Experimental studies have mapped the principal sensory trigeminal nucleus to pontine rhombomeres (r) r2-r3 in the mouse. The spinal trigeminal nucleus emerges as a plurisegmental formation covering several rhombomeres (r4 to r11 in mice) across pontine, retropontine and medullary hindbrain regions. In the present work we reexamined the issue of rhombomeric vs. classical subdivisions of this column. To this end, we analyzed its subdivisions in an AZIN2-lacZ transgenic mouse, known as a reference model for hindbrain topography, together with transgenic reporter lines for trigeminal fibers. We screened as well for genes differentially expressed along the axial dimension of this structure in the adult and juvenile mouse brain. This analysis yielded genes from multiple functional families that display transverse domains fitting the mentioned rhombomeric map. The spinal trigeminal nucleus thus represents a plurisegmental structure with a series of distinct neuromeric units having unique combinatorial molecular profiles.

3.
Front Neuroanat ; 15: 643320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664652

RESUMO

The interpeduncular nucleus (IPN) is a highly conserved limbic structure in the vertebrate brain, located in the isthmus and rhombomere 1. It is formed by various populations that migrate from different sites to the distinct domains within the IPN: the prodromal, rostral interpeduncular, and caudal interpeduncular nuclei. The aim here was to identify genes that are differentially expressed across these domains, characterizing their putative functional roles and interactions. To this end, we screened the 2,038 genes in the Allen Developing Mouse Brain Atlas database expressed at E18.5 and we identified 135 genes expressed within the IPN. The functional analysis of these genes highlighted an overrepresentation of gene families related to neuron development, cell morphogenesis and axon guidance. The interactome analysis within each IPN domain yielded specific networks that mainly involve members of the ephrin/Eph and Cadherin families, transcription factors and molecules related to synaptic neurotransmission. These results bring to light specific mechanisms that might participate in the formation, molecular regionalization, axon guidance and connectivity of the different IPN domains. This genoarchitectonic model of the IPN enables data on gene expression and interactions to be integrated and interpreted, providing a basis for the further study of the connectivity and function of this poorly understood nuclear complex under both normal and pathological conditions.

4.
Front Cell Dev Biol ; 8: 588851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195252

RESUMO

The interpeduncular nucleus (IPN) is a hindbrain structure formed by three main subdivisions, the prodromal (Pro) domain located at the isthmus (Ist), and the rostral and caudal interpeduncular domains (IPR, IPC) within rhombomere 1 (r1). Various cell populations can be detected in the IPN through the expression of the Nkx6.1, Otp, Otx2, Pax7, and/or Irx2 transcription factors. These cell populations follow independent dorsoventral tangential and radial migratory routes targeting the ventral paramedian region of Ist and r1. Here we set out to examine the influence of the Netrin-1/DCC pathway on these migrations, since it is known to regulate other processes of neuronal migration in the brain. To this end, we analyzed IPN development in late gestational wild-type and DCC-/- mice, using mainly in situ hybridization (ISH) to identify the cells expressing each of the aforementioned genes. We found that the migration of Nkx6.1 + and Irx2 + cells into the Pro domain was strongly disrupted by the loss of DCC, as occurred with the migration of Pax7 +, Irx2 +, and Otp + cells that would normally form the IPR. In addition, there was mild impairment of the migration of the Pax7 + and Otx2 + cells that form the IPC. These results demonstrate that the Netrin-1/DCC signaling pathway is involved in the migration of most of the IPN populations, mainly affecting those of the Pro and IPR domains of this nucleus. There are psychiatric disorders that involve the medial habenula (mHb)-IPN system, so that this experimental model could provide a basis to study their neurodevelopmental etiology.

5.
Front Neurol ; 11: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117006

RESUMO

The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.

6.
Brain Struct Funct ; 222(5): 2071-2092, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27783221

RESUMO

The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. The molecular patterning of the developing otic epithelium creates various positional identities, consequently leading to the stereotyped specification of each neurosensory and non-sensory element of the membranous labyrinth. The Iroquois (Iro/Irx) genes, clustered in two groups (A: Irx1, Irx2, and Irx4; and B: Irx3, Irx5, and Irx6), encode for transcriptional factors involved directly in numerous patterning processes of embryonic tissues in many phyla. This work presents a detailed study of the expression patterns of these six Irx genes during chick inner ear development, paying particular attention to the axial specification of the otic anlagen. The Irx genes seem to play different roles at different embryonic periods. At the otic vesicle stage (HH18), all the genes of each cluster are expressed identically. Both clusters A and B seem involved in the specification of the lateral and posterior portions of the otic anlagen. Cluster B seems to regulate a larger area than cluster A, including the presumptive territory of the endolymphatic apparatus. Both clusters seem also to be involved in neurogenic events. At stages HH24/25-HH27, combinations of IrxA and IrxB genes participate in the specification of most sensory patches and some non-sensory components of the otic epithelium. At stage HH34, the six Irx genes show divergent patterns of expression, leading to the final specification of the membranous labyrinth, as well as to cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Orelha Interna/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Animais , Embrião de Galinha , Galinhas , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Vertebrados/metabolismo
7.
Brain Struct Funct ; 221(2): 815-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25381007

RESUMO

The medulla oblongata is the caudal portion of the vertebrate hindbrain. It contains major ascending and descending fiber tracts as well as several motor and interneuron populations, including neural centers that regulate the visceral functions and the maintenance of bodily homeostasis. In the avian embryo, it has been proposed that the primordium of this region is subdivided into five segments or crypto-rhombomeres (r7-r11), which were defined according to either their parameric position relative to intersomitic boundaries (Cambronero and Puelles, in J Comp Neurol 427:522-545, 2000) or a stepped expression of Hox genes (Marín et al., in Dev Biol 323:230-247, 2008). In the present work, we examine the implied similar segmental organization of the mouse medulla oblongata. To this end, we analyze the expression pattern of Hox genes from groups 3 to 8, comparing them to the expression of given cytoarchitectonic and molecular markers, from mid-gestational to perinatal stages. As a result of this approach, we conclude that the mouse medulla oblongata is segmentally organized, similarly as in avian embryos. Longitudinal structures such as the nucleus of the solitary tract, the dorsal vagal motor nucleus, the hypoglossal motor nucleus, the descending trigeminal and vestibular columns, or the reticular formation appear subdivided into discrete segmental units. Additionally, our analysis identified an internal molecular organization of the migrated pontine nuclei that reflects a differential segmental origin of their neurons as assessed by Hox gene expression.


Assuntos
Bulbo/metabolismo , Animais , Camundongos , Neurônios/metabolismo , Ponte/metabolismo , Formação Reticular , Rombencéfalo/metabolismo
8.
Nat Commun ; 6: 7199, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26068067

RESUMO

Möbius syndrome (MBS) is a neurological disorder that is characterized by paralysis of the facial nerves and variable other congenital anomalies. The aetiology of this syndrome has been enigmatic since the initial descriptions by von Graefe in 1880 and by Möbius in 1888, and it has been debated for decades whether MBS has a genetic or a non-genetic aetiology. Here, we report de novo mutations affecting two genes, PLXND1 and REV3L in MBS patients. PLXND1 and REV3L represent totally unrelated pathways involved in hindbrain development: neural migration and DNA translesion synthesis, essential for the replication of endogenously damaged DNA, respectively. Interestingly, analysis of Plxnd1 and Rev3l mutant mice shows that disruption of these separate pathways converge at the facial branchiomotor nucleus, affecting either motoneuron migration or proliferation. The finding that PLXND1 and REV3L mutations are responsible for a proportion of MBS patients suggests that de novo mutations in other genes might account for other MBS patients.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Síndrome de Möbius/genética , Mutação , Animais , Dano ao DNA , Exoma , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana , Camundongos , Camundongos Mutantes
9.
Anat Rec (Hoboken) ; 295(3): 492-503, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213583

RESUMO

Hspb8 is a member of the Hspb family of chaperone-like proteins. It is involved in several neural disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, hereditary distal motor neuropathy, and Charcot-Marie-Tooth's disease. In this work, we aimed to characterize its expression pattern in the mouse brain, by using the information available at online databases of high-throughput in situ hybridization. Therefore, we downloaded and analyzed the image series from these databases showing Hspb8 mRNA expression from embryonic to adult and aging stages. In early gestational embryos, Hspb8 was expressed in the hippocampal anlagen and in the ventricular layer of rhombomere 4. At perinatal stages, there appeared transitory expression in the dentate gyrus and the cerebellar cortex. From perinatal to aging stages, the neurons of the mesencephalic trigeminal nucleus and cranial motor nuclei displayed stable and strong Hspb8 expression. Additionally, along these stages there was moderate and relatively homogenous expression in the anterodorsal thalamic, lateral mammillary, arcuate hypothalamic and medial habenular nuclei, and in the locus coeruleus. In its turn, the basal ganglia, cerebellar inner granular layer and diverse sensory and reticular formation nuclei of the hindbrain contained scattered cells with strong expression. In conclusion, Hspb8 mRNA is constitutively expressed in specific brain structures across ontogeny, so that eventually they could be affected by the malfunction or deregulation of this molecule.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP20/biossíntese , Proteínas de Choque Térmico HSP20/genética , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Organogênese/genética , RNA Mensageiro/biossíntese , Animais , Encéfalo/crescimento & desenvolvimento , Química Encefálica/genética , Proteínas de Choque Térmico HSP20/antagonistas & inibidores , Proteínas de Choque Térmico , Internet , Metanálise como Assunto , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares , Proteínas Musculares/antagonistas & inibidores
10.
Dev Biol ; 361(1): 12-26, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22019302

RESUMO

The interpeduncular nucleus (IP) is a key limbic structure, highly conserved evolutionarily among vertebrates. The IP receives indirect input from limbic areas of the telencephalon, relayed by the habenula via the fasciculus retroflexus. The function of the habenulo-IP complex is poorly understood, although there is evidence that in rodents it modulates behaviors such as learning and memory, avoidance, reward and affective states. The IP has been an important subject of interest for neuroscientists, and there are multiple studies about the adult structure, chemoarchitecture and its connectivity, with complex results, due to the presence of multiple cell types across a variety of subnuclei. However, the ontogenetic origins of these populations have not been examined, and there is some controversy about its location in the midbrain-anterior hindbrain area. To address these issues, we first investigated the anteroposterior (AP) origin of the IP complex by fate-mapping its neuromeric origin in the chick, discovering that the IP develops strictly within isthmus and rhombomere 1. Next, we studied the dorsoventral (DV) positional identity of subpopulations of the IP complex. Our results indicate that there are at least four IP progenitor domains along the DV axis. These specific domains give rise to distinct subtypes of cell populations that target the IP with variable subnuclear specificity. Interestingly, these populations can be characterized by differential expression of the transcription factors Pax7, Nkx6.1, Otp, and Otx2. Each of these subpopulations follows a specific route of migration from its source, and all reach the IP roughly at the same stage. Remarkably, IP progenitor domains were found both in the alar and basal plates. Some IP populations showed rostrocaudal restriction in their origins (isthmus versus anterior or posterior r1 regions). A tentative developmental model of the structure of the avian IP is proposed. The IP emerges as a plurisegmental and developmentally heterogeneous formation that forms ventromedially within the isthmus and r1. These findings are relevant since they help to understand the highly complex chemoarchitecture, hodology and functions of this important brainstem structure.


Assuntos
Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Sistema Límbico/citologia , Sistema Límbico/embriologia , Modelos Biológicos , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Hibridização In Situ , Fator de Transcrição PAX7/metabolismo
11.
Int J Dev Neurosci ; 29(4): 451-60, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21345367

RESUMO

Hereditary congenital facial paresis (HCFP) consists of the paralysis or weakness of facial muscles caused by a maldevelopment of the facial branchiomotor (FBM) nucleus and its nerve. Linkage analyses have related this disorder to two loci, HCFP1 and HCFP2, placed respectively in human chromosomes 3q21.2-q22.1 and 10q21.3-q22.1, but the causative genes are still unknown. In this work we aimed to identify which genes from these loci are expressed in the developing hindbrain and particularly in the FBM nucleus. To this end, we retrieved from the ENSEMBL genomic database the list of these genes as well as their respective mouse orthologs. Subsequently we examined their respective expression patterns in the mouse embryo by using the GenePaint gene expression database. As a result of this screening, we found a new gene (Mgll) from the HCFP1 locus that has strong and specific expression in the developing FBM nucleus. In its turn, the HCFP2 locus appeared as a large gene-desert region, flanked by two genes, Reep3, with specific expression in the FBM nucleus, and Lrrtm3, broadly expressed in the brainstem, including the same nucleus. The concurrence of genomic position and neural expression pattern makes these genes new potential candidates for HCFP.


Assuntos
Paralisia Facial/congênito , Ligação Genética , Animais , Mapeamento Cromossômico , Bases de Dados de Ácidos Nucleicos , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Paralisia Facial/genética , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Humanos , Camundongos , Dados de Sequência Molecular
12.
Dev Biol ; 323(2): 230-47, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18786526

RESUMO

The medulla oblongata (or caudal hindbrain) is not overtly segmented, since it lacks observable interrhombomeric boundaries. However, quail-chick fate maps showed that it is formed by 5 pseudorhombomeres (r7-r11) which were empirically found to be delimited consistently at planes crossing through adjacent somites (Cambronero and Puelles, 2000). We aimed to reexamine the possible segmentation or rostrocaudal regionalisation of this brain region attending to molecular criteria. To this end, we studied the expression of Hox genes from groups 3 to 7 correlative to the differentiating nuclei of the medulla oblongata. Our results show that these genes are differentially expressed in the mature medulla oblongata, displaying instances of typical antero-posterior (3' to 5') Hox colinearity. The different sensory and motor columns, as well as the reticular formation, appear rostrocaudally regionalised according to spaced steps in their Hox expression pattern. The anterior limits of the respective expression domains largely fit boundaries defined between the experimental pseudorhombomeres. Therefore the medulla oblongata shows a Hox-related rostrocaudal molecular regionalisation comparable to that found among rhombomeres, and numerically consistent with the pseudorhombomere list. This suggests that medullary pseudorhombomeres share some AP patterning mechanisms with the rhombomeres present in the rostral, overtly-segmented hindbrain, irrespective of variant boundary properties.


Assuntos
Galinhas/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio/genética , Bulbo/embriologia , Bulbo/metabolismo , Animais , Embrião de Galinha , Proteínas de Homeodomínio/metabolismo , Especificidade de Órgãos
13.
Endocrinology ; 149(10): 5012-23, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18583422

RESUMO

Polyamines play an essential role in murine development, as demonstrated by both gene ablation in ornithine decarboxylase (ODC)-deficient embryos and pharmacological treatments of pregnant mice. However, the molecular and cellular mechanisms by which ODC inhibition affects embryonic development during critical periods of pregnancy are mostly unknown. Our present results demonstrate that the contragestational effect of alpha-difluoromethylornithine (DFMO), a suicide inhibitor of ODC, when given at d 7-9 of pregnancy, is associated with embryo growth arrest and marked alterations in the development of yolk sac and placenta. Blood island formation as well as the transcript levels of embryonary globins alpha-like x chain and beta-like y-chain was markedly decreased in the yolk sac. At the placental level, abnormal chorioallantoic attachment, absence of the spongiotrophoblast layer and a deficient development of the labyrinthine zone were evident. Real-time RT-PCR analysis showed that transcript levels of the steroidogenic genes steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase VI, and 17alpha-hydroxylase were markedly decreased by DFMO treatment in the developing placenta at d 9 and 10 of pregnancy. Plasma values of progesterone and androstenedione were also decreased by DFMO treatment. Transcriptomic analysis also detected changes in the expression of several genes involved in placentation and the differentiation of trophoblastic lineages. In conclusion, our results indicate that ODC inhibition at d 8 of pregnancy is related to alterations in yolk sac formation and trophoblast differentiation, affecting processes such as vasculogenesis and steroidogenesis.


Assuntos
Decídua/fisiologia , Eflornitina/farmacologia , Desenvolvimento Embrionário/fisiologia , Inibidores Enzimáticos/farmacologia , Poliaminas/metabolismo , Androstenodiona/sangue , Animais , Decídua/citologia , Decídua/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Idade Gestacional , Hematopoese/efeitos dos fármacos , Hematopoese/fisiologia , Camundongos , Camundongos Endogâmicos , Ornitina Descarboxilase/genética , Gravidez , Progesterona/sangue , Esteroides/biossíntese , Saco Vitelino/efeitos dos fármacos , Saco Vitelino/fisiologia
14.
Dev Dyn ; 235(9): 2586-91, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16773660

RESUMO

The Scratch genes belong to the Snail superfamily of zinc-finger transcription factors present in the metazoa, represented in mammals by the Scratch1 and Scratch2 genes. We have analyzed the expression of these genes in the brain of mice at developmental stages between 9.5 days-post-coitum to adulthood. Both genes are expressed in the mantle layer of the neuroepithelium at mid-gestational stages in all regions except for the region corresponding to the V2 interneuron column, which lacked Scratch2 transcripts. From perinatal to adult stages, the expression patterns of the two genes differ. Scratch1 remains strongly expressed in almost all brain regions, although it is not found in some ventral structures such as motor nuclei and hypothalamic regions. In contrast, Scratch2 expression progressively diminishes and virtually no expression can be detected in the adult brain. Nevertheless, strong expression of Scratch2 is retained in the postnatal cortical subventricular zone, in the inner part of the cerebellar external granular layer, and in the glial cells of the adult vomeronasal nerve.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Fatores de Transcrição/genética , Animais , Encéfalo/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Gravidez , Fatores de Transcrição da Família Snail , Distribuição Tecidual , Dedos de Zinco/genética
15.
Dev Dyn ; 234(3): 709-17, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15973733

RESUMO

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of catecholamines and, thus, critical in determining the catecholaminergic phenotype. In this study, we have examined the expression of TH mRNA by in situ hybridization in the embryonic mouse forebrain and midbrain and have mapped its localization according to the neuromeric pattern. We find that early in embryonic development, 10 to 12 days post coitum (dpc), TH mRNA is expressed in ample continuous regions of the neuroepithelium, extending across several neuromeres. However, from 12.5 dpc onward, the expression becomes restricted to discrete regions, which correspond to the dopaminergic nuclei (A8 to A15). In addition to these nuclei previously described, TH mRNA is also observed in regions that do not express this enzyme according to immunohistochemical studies. This difference in relation to protein expression pattern is consequent with the known posttranscriptional regulation of TH expression. The most representative example of a novel positive region is the conspicuous mRNA expression in both medial and lateral ganglionic eminences. This result agrees with reports describing the capacity of striatal stem cells (that is, located at the lateral ganglionic eminence) to become dopaminergic in vitro. Other regions include the isthmic mantle layer and the early floor plate of the midbrain-caudal forebrain. On the whole, the expression map we have obtained opens new perspectives for evolutionary/comparative studies, as well as for therapeutic approaches looking for potentially dopaminergic cells. Developmental Dynamics 234:709-717, 2005. (c) 2005 Wiley-Liss, Inc.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Neurônios/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Animais , Núcleo Celular/genética , Dopamina/metabolismo , Hibridização In Situ , Mesencéfalo/embriologia , Mesencéfalo/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Prosencéfalo/embriologia , Prosencéfalo/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
16.
J Cell Sci ; 117(Pt 13): 2827-39, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15169839

RESUMO

The transcription factors Snail and E47 are direct repressors of E-cadherin, with both inducing a full epithelial-mesenchymal transition and invasive behaviour in vitro when expressed in the prototypic epithelial MDCK cell line. The role of these repressors in the invasive process and in other tumorigenic properties is, nevertheless, still poorly understood. However, organotypic cultures and in vivo transplantation assays indicate that cells expressing MDCK-Snail and MDCK-E47 exhibit significant differences. MDCK-Snail cells have a higher infiltrative potential than MDCK-E47 cells. Interestingly, both cell types induce angiogenesis of the host stromal tissue in transplantation assays, but this property is greatly enhanced in transplants of MDCK-E47 cells. Xenografted tumours induced in nude mice also show signs of strong angiogenic potential, again markedly increased in tumours induced by MDCK-E47 which exhibit a higher vessel density and proliferation rate than those induced by MDCK-Snail cells. These results suggest differential roles for Snail and E47 E-cadherin repressors in tumour progression where Snail is implicated in promoting the initial invasion and E47 plays an active role in tumour cell growth by promoting angiogenesis.


Assuntos
Caderinas/genética , Caderinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Animais , Divisão Celular , Linhagem Celular , Proteínas de Ligação a DNA/genética , Cães , Proteínas da Matriz Extracelular/metabolismo , Imuno-Histoquímica , Cinética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição TCF , Proteína 1 Semelhante ao Fator 7 de Transcrição , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/metabolismo , Transplante Heterólogo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Dev Dyn ; 230(1): 144-8, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15108319

RESUMO

Slug and Snail are members of the Snail family of zinc-finger transcription factors. They are involved in triggering epithelial-mesenchymal transitions during the development of the neural crest and the mesoderm. We have analyzed by in situ hybridization their expression in the nervous system of chicken embryos at mid-gestation stages, from 4 to 15 days of incubation. We show that Slug and Snail show specific and nonoverlapping expression patterns in mesenchymal structures associated to the developing central nervous system. While Slug is expressed in the meninges and in the pericytes/vascular smooth muscle cells (vSMCs) of the brain, the spinal cord and other embryonic tissues, Snail is expressed in the stroma of the choroid plexus of both the hindbrain and the forebrain.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/biossíntese , Animais , Encéfalo/embriologia , Embrião de Galinha , Galinhas , Plexo Corióideo/embriologia , Mesoderma/metabolismo , Miócitos de Músculo Liso/citologia , Prosencéfalo/embriologia , Rombencéfalo/embriologia , Fatores de Transcrição da Família Snail , Medula Espinal/embriologia , Transcrição Gênica , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...