Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-467458

RESUMO

The systemic immune response to viral infection is shaped by master transcription factors such as NF{kappa}B or PU.1. Although long non-coding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA-seq approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9 - key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling characterized PIRAT as a nuclear decoy RNA, diverting the PU.1 transcription factor from alarmin promoters to dead-end pseudogenes in naive monocytes. NF{kappa}B-dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Our results suggest a major role of nuclear noncoding RNA circuits in systemic antiviral responses to SARS-CoV-2 in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...