RESUMO
A reliable somatic embryogenesis protocol is a prerequisite for application of other plant biotechniques. Several protocols were reported for genus Lilium, with variable success. Between them, transverse Thin Cell Layers (tTCL) were used efficiently to induce indirect somatic embryogenesis of Lilium. Somatic embryogenesis potential is dependent on the genotype, explant, and culture medium composition, especially as for plant growth regulators and environmental conditions. Usually, the process comprises three phases: embryogenic callus induction, embryogenic callus proliferation and somatic embryo germination. Somatic embryo germination can be achieved in light or dark. In the first case, complete plantlets are formed, with green leaves and pseudobulb in the base. In darkness, microbulbs are formed from single somatic embryos or clusters. A last phase of microbulb enlargement allows plantlets or microbulbs to increase their biomass. These enlarged microbulbs do not need special acclimatization conditions when transferred to soil and quickly produce sturdy plants. This chapter describes a protocol for somatic embryogenesis of Lilium using tTCL from microbulbs.
Assuntos
Lilium/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Técnicas de Embriogênese Somática de Plantas/métodos , Técnicas de Cultura de Tecidos/métodos , Aclimatação/genética , Germinação/genética , Lilium/genética , Desenvolvimento Vegetal/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genéticaRESUMO
In vitro plant production by direct organogenesis from immature flower heads is an ideal approach for clonal propagation of onions (Allium cepa L.). This technique ensures genetic stability, high propagation rate, and maintains donor plant of explants with an advantage over other means of in vitro regeneration. Onion micropropagation is usually applied in breeding programs, maintenance, and multiplication of cytoplasmic-male sterile lines for hybrid production, germplasm conservation, and as a tool for the application of other biotechnologies. For in vitro culture, mature onion bulbs are induced to reproductive phase by vernalization and forced to inflorescence initiation. Immature umbels are dissected from bulbs or cut directly when they appear from the pseudostem among the leaves. Disinfected inflorescences are cultivated in BDS basal medium supplemented with 30 g/L sucrose, 0.1 mg/L naphthalene acetic acid, 1 mg/L N (6)-benzyladenine, and 8 g/L agar, pH 5.5, under 16 h photoperiod white fluorescent light (PPD: 50-70 µmol/m(2)s) for 35 days. The regenerated shoot clumps are divided and subculture under the same conditions. For bulbification phase, the individual shoots are cultured in BDS basal medium containing 90 g/L sucrose, without plant growth regulators, pH 5.5, under 16 h photoperiod. Microbulbs can be directly cultivated ex vitro without acclimation.
Assuntos
Técnicas de Cultura/métodos , Inflorescência/crescimento & desenvolvimento , Cebolas/crescimento & desenvolvimento , Aclimatação , Temperatura Baixa , Meios de Cultura/química , Inflorescência/fisiologia , Cebolas/citologia , Cebolas/fisiologia , EsterilizaçãoRESUMO
The aim of this work was to explore the possibility of obtaining transgenic plants of onion varieties cultivated in Argentina, starting from calli induced from mature zygotic embryos, using two strains of Agrobacterium tumefaciens as transfection vectors. Mature embryos from three varieties of 'Valenciana' onion, Torrentina, Cobriza INTA and Grano de oro were in vitro cultivated for callus induction. After three to four months an average of 57.4 percent success for the three varieties was reached. Transformation was carried out with Agl1 or LBA 4404 A. tumefaciens strains, both carrying a binary vector containing the marker gene gus a and the selection gene nptII. Selection was done in callus induction medium containing 10 mgL-1 geneticin during three subcultures. At the end of the selection period, 342 portions of calli were recovered and transferred to regeneration medium. Of the selected calli evaluated by the expresion of the beta-glucuronidase enzyme, 42 percent presented extensive blue areas or were completely blue. At the end of the first subculture in the regeneration medium, 54 calli were considered potentially organogenic because of the green areas observed. At the end of the wole regeneration period, just one normal plant was obtained, that was negative to PCR analysis using specific primers for gus a and nptII. All selected calli came from the Torrentina variety and the highest quantity of them were transformed with the strain LBA 4404.
RESUMO
The micropropagation of Lilium longiflorum requires adequate equipment which may not be afforded by small laboratories or producers. In this work we compared traditional methodology with a protocol that included easily available elements to sterilize materials and culture media, together with addition of hydrogen peroxide (H2O2) into the nutrient media as chemical sterilizer. A series of H2O2 concentrations (0.005, 0.010, 0.015 and 0.020% p/v) was used to control contamination during in vitro establishment and subsequent cultivation; the explant organogenic response was also examined and compared to the traditional micropropagation technique. The level of culture contamination was within acceptable limits in all treatments, though it was higher in the H2O2 treatments (40%) compared to the traditional methodology (20%). There were not significant differences in the number of bulblets per explant, and at the end of the multiplication phase, bulblets from 0.02% H2O2 treatment had greater biomass than from other treatments, indicating a beneficial effect. These bulblets also had a higher relative growth ratio with respect to the traditional method when cultivated for an additional period and showed the highest average bulblet fresh weight. It is expected that this higher bulblet mass would result in better performance during ex vitro cultivation.
Assuntos
Anti-Infecciosos Locais/farmacologia , Peróxido de Hidrogênio/farmacologia , Lilium/crescimento & desenvolvimentoRESUMO
The induction and improvement of in vitro rhizogenesis of microshoots of Prosopis chilensis (Mol.) Stuntz and Nothofagus alpina (Poep. et Endl. Oerst.) were compared using Agrobacterium rhizogenes (Ar) versus indole-3-butyric acid (IBA) in the culture media. Microshoots of P. chilensis (1-2 cm length), coming from in vitro grown seedlings, were cultivated in a modified Broadleaved Tree Medium (BTMm) containing half salt concentration of macronutrients and 0.05 mg x L(-1) benzilaminopurine (BAP). After 30 days, microshoots with 2-4 leaves were selected and cultured in BTMm-agar in presence or abscense of Ar and in combination with IBA. For N. alpina, the apical shoots with the first 2 true leaves, from 5 weeks old seedlings, were cultured in the abovementioned medium, but with 0.15 mg x L(-1) of BAP. After 2 months, microshoots with 2-3 leaves were selected and cultured in BTMm-agar, supplemented with 5 mg x L(-1) IBA or in liquid BTMm on perlite and, in the presence or absence of A. rhizogenes (Ar) and in combination with 3 mg x L(-1) IBA. Rooting in P. chilensis reached 100.0% when Ar infection was produced in the presence of IBA, increasing both, the number and dry weight of roots. In N. alpina, 90.0% of rooting efficiency was obtained when Ar infection was produced in liquid culture and in the absence of auxin.
Assuntos
Indução Embrionária/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Prosopis/crescimento & desenvolvimento , Rhizobium/fisiologia , Árvores/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Prosopis/efeitos dos fármacos , Prosopis/microbiologia , Árvores/efeitos dos fármacos , Árvores/microbiologiaRESUMO
The induction and improvement of in vitro rhizogenesis of microshoots of Prosopis chilensis (Mol.) Stuntz and Nothofagus alpina (Poep. et Endl. Oerst.) were compared using Agrobacterium rhizogenes (Ar) versus indole-3-butyric acid (IBA) in the culture media. Microshoots of P. chilensis (1-2 cm length), coming from in vitro grown seedlings, were cultivated in a modified Broadleaved Tree Medium (BTMm) containing half salt concentration of macronutrients and 0.05 mg x L(-1) benzilaminopurine (BAP). After 30 days, microshoots with 2-4 leaves were selected and cultured in BTMm-agar in presence or abscense of Ar and in combination with IBA. For N. alpina, the apical shoots with the first 2 true leaves, from 5 weeks old seedlings, were cultured in the abovementioned medium, but with 0.15 mg x L(-1) of BAP. After 2 months, microshoots with 2-3 leaves were selected and cultured in BTMm-agar, supplemented with 5 mg x L(-1) IBA or in liquid BTMm on perlite and, in the presence or absence of A. rhizogenes (Ar) and in combination with 3 mg x L(-1) IBA. Rooting in P. chilensis reached 100.0
when Ar infection was produced in the presence of IBA, increasing both, the number and dry weight of roots. In N. alpina, 90.0
of rooting efficiency was obtained when Ar infection was produced in liquid culture and in the absence of auxin.