Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473844

RESUMO

Nicotinamide mononucleotide (NMN) has emerged as a promising therapeutic intervention for age-related disorders, including type 2 diabetes. In this study, we confirmed the previously observed effects of NMN treatment on glucose uptake and investigated its underlying mechanisms in various tissues and cell lines. Through the most comprehensive proteomic analysis to date, we discovered a series of novel organ-specific effects responsible for glucose uptake as measured by the IPGTT: adipose tissue growing (suggested by increased protein synthesis and degradation and mTOR proliferation signaling upregulation). Notably, we observed the upregulation of thermogenic UCP1, promoting enhanced glucose conversion to heat in intermuscular adipose tissue while showing a surprising repressive effect on mitochondrial biogenesis in muscle and the brain. Additionally, liver and muscle cells displayed a unique response, characterized by spliceosome downregulation and concurrent upregulation of chaperones, proteasomes, and ribosomes, leading to mildly impaired and energy-inefficient protein synthesis machinery. Furthermore, our findings revealed remarkable metabolic rewiring in the brain. This involved increased production of ketone bodies, downregulation of mitochondrial OXPHOS and TCA cycle components, as well as the induction of well-known fasting-associated effects. Collectively, our data elucidate the multifaceted nature of NMN action, highlighting its organ-specific effects and their role in improving glucose uptake. These findings deepen our understanding of NMN's therapeutic potential and pave the way for novel strategies in managing metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Mononucleotídeo de Nicotinamida , Humanos , Mononucleotídeo de Nicotinamida/metabolismo , Biogênese de Organelas , Proteômica , Tecido Adiposo/metabolismo , Glucose , NAD/metabolismo
2.
Sci Total Environ ; 884: 163810, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127150

RESUMO

In the last decades, increased intakes of contaminants and the habitats' destruction have produced drastic changes in the aquatic ecosystems. The environmental contaminants can accumulate in aquatic organisms, leading to the disturbance of the antioxidant/prooxidant balance in fish. In this context, we evaluated the level of organic, inorganic and microbiological pollutants in four leisure lakes (Chitila, Floreasca, Tei and Vacaresti) from Bucharest, the largest city of Romania, in order to compare their effects on hepatopancreas and gills metabolism and antioxidant defense mechanisms in Carassius gibelio, the most known and widespread freshwater fish in this country. The lowest level of oxidative stress was recorded in the case of fish collected from the Vacaresti lake, a protected wetland area where aquatic organisms live in wild environmental conditions. In contrast, significant oxidative changes were observed in the hepatopancreas and gills of fish from the Chitila, Floreasca and Tei lakes, such as reduced glutathione S-transferase activity and glutathione level, and increased degree of lipid peroxidation, being correlated with elevated levels of pesticides (such as 2,4'-methoxychlor) and Escherichia coli load in these organs. Although different patterns of pollutants' accumulation were observed, no important interindividual variations in cytosine methylation degree were determined. In conclusion, the presence and concentrations of metals, pesticides and antibiotics varied with the analyzed tissue and sampling site, and were correlated with changes in the cellular redox homeostasis, but without significantly affecting the epigenetic mechanisms.


Assuntos
Cyprinidae , Microbiota , Praguicidas , Poluentes Químicos da Água , Animais , Lagos , Antioxidantes/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Cyprinidae/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Praguicidas/metabolismo , Brânquias/metabolismo
3.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241937

RESUMO

Two neutral copper(I) halide complexes ([Cu(BTU)2X], X = Cl, Br) were prepared by the reduction of the corresponding copper(II) halides (chloride or bromide) with a benzoylthiourea (BTU, N-(3,4-diheptyloxybenzoyl)-N'-(4-heptadecafluorooctylphenyl)thiourea) ligand in ethanol. The two copper(I) complexes show a very interesting combination of 2D supramolecular structures, liquid crystalline, emission, and 1D ionic conduction properties. Their chemical structure was ascribed based on ESI-MS, elemental analysis, IR, and NMR spectroscopies (1H and 13C), while the mesomorphic behavior was analyzed through a combination of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and powder X-ray diffraction (XRD). These new copper(I) complexes have mesomorphic properties and exhibit a hexagonal columnar mesophase over a large temperature range, more than 100 K, as evidenced by DSC studies and POM observations. The thermogravimetric analysis (TG) indicated a very good thermal stability of these samples up to the isotropization temperatures and over the whole temperature range of the liquid crystalline phase existence. Both complexes displayed a solid-state emission with quantum yields up to 8% at ambient temperature. The electrical properties of the new metallomesogens were investigated by variable temperature dielectric spectroscopy over the entire temperature range of the liquid crystalline phase. It was found that the liquid crystal phases favoured anhydrous proton conduction provided by the hydrogen-bonding networks formed by the NH…X moieties (X = halide or oxygen) of the benzoylthiourea ligand in the copper(I) complexes. A proton conductivity of 2.97 × 10-7 S·cm-1 was achieved at 430 K for the chloro-complex and 1.37 × 10-6 S·cm-1 at 440K for the related bromo-complex.

4.
Toxins (Basel) ; 15(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37104237

RESUMO

Mycotoxins are toxic compounds produced by certain strains of fungi that can contaminate raw feed materials. Once ingested, even in small doses, they cause multiple health issues for animals and, downstream, for people consuming meat. It was proposed that inclusion of antioxidant-rich plant-derived feed might diminish the harmful effects of mycotoxins, maintaining the farm animals' health and meat quality for human consumption. This work investigates the large scale proteomic effects on piglets' liver of aflatoxin B1 and ochratoxin A mycotoxins and the potential compensatory effects of grapeseed and sea buckthorn meal administration as dietary byproduct antioxidants against mycotoxins' damage. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three (n = 10) experimental groups (A, M, AM) and one control group (C) and fed with experimental diets for 30 days. After 4 weeks, liver samples were collected, and the microsomal fraction was isolated. Unbiased label-free, library-free, data-independent acquisition (DIA) mass spectrometry SWATH methods were able to relatively quantify 1878 proteins from piglets' liver microsomes, confirming previously reported effects on metabolism of xenobiotics by cytochrome P450, TCA cycle, glutathione synthesis and use, and oxidative phosphorylation. Pathways enrichment revealed that fatty acid metabolism, steroid biosynthesis, regulation of actin cytoskeleton, regulation of gene expression by spliceosomes, membrane trafficking, peroxisome, thermogenesis, retinol, pyruvate, and amino acids metabolism pathways are also affected by the mycotoxins. Antioxidants restored expression level of proteins PRDX3, AGL, PYGL, fatty acids biosynthesis, endoplasmic reticulum, peroxisome, amino acid synthesis pathways, and, partially, OXPHOS mitochondrial subunits. However, excess of antioxidants might cause significant changes in CYP2C301, PPP4R4, COL18A1, UBASH3A, and other proteins expression levels. Future analysis of proteomics data corelated to animals growing performance and meat quality studies are necessary.


Assuntos
Antioxidantes , Micotoxinas , Animais , Humanos , Suínos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Aflatoxina B1/metabolismo , Microssomos Hepáticos/metabolismo , Desmame , Proteômica , Micotoxinas/análise , Fígado , Ração Animal/análise
5.
Sci Rep ; 8(1): 12278, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115969

RESUMO

Diabetes is a chronic and progressive disease with continuously increasing prevalence, rising financial pressure on the worldwide healthcare systems. Recently, the insulin resistance, hallmark of type 2 diabetes, was cured in mice treated with NAD+ precursor ß-nicotinamide mononucleotide (NMN), no toxic effects being reported. However, NMN has a high price tag, more cost effective production methods are needed. This study proposes a biotechnological NMN production method in Escherichia coli. We show that bicistronic expression of recombinant nicotinamide phosphoribosyl transferase (Nampt) and phosphoribosyl pyrophosphate (PRPP) synthetase in the presence of nicotinamide (NAM) and lactose may be a successful strategy for cost effective NMN production. Protein expression vectors carrying NAMPT gene from Haemophilus ducreyi and PRPP synthetase from Bacillus amyloliquefaciens with L135I mutation were transformed in Escherichia coli BL21(DE3)pLysS. NMN production reached a maximum of 15.42 mg per L of bacterial culture (or 17.26 mg per gram of protein) in these cells grown in PYA8 medium supplemented with 0.1% NAM and 1% lactose.


Assuntos
Escherichia coli/metabolismo , Mononucleotídeo de Nicotinamida/biossíntese , Sequência de Aminoácidos , Reatores Biológicos , Meios de Cultura , Cinética , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
6.
Sci Rep ; 8(1): 4433, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535407

RESUMO

Over 12% of the world's health resources are spent on treating diabetes, as high blood glucose is the third cause of mortality worldwide. Insulin resistance is the basis of the most common form of diabetes: type 2 diabetes. Recent animal studies report successful attempts at reversing type 2 diabetes by the administering of the NAD+ precursor nicotinamide mononucleotide (NMN). However, the current high price of this molecule urges for more efficient and cost-effective production methods. This work proposes a method for purifying NMN by Size Exclusion Chromatography (SEC) on silica with a covalently attached coating of poly(2-hydroxyethyl aspartamide) (PolyHEA) stationary phase using an isocratic elution with a denaturing mobile phase (50 mM formic acid) from a complex molecular mixture such as a fermentation broth. The eluted peaks were identified by UV-Vis analysis and confirmed with ESI+ mass spectrometry and a HPLC reversed-phase method. The proposed SEC method is simple, patent-free, directly applicable for industrial production with a minimum scale up effort. The need for multiple chromatographic steps is eliminated and the lysate filtration and clarification steps are simplified. Substantial reduction in NMN production costs and increased purity of NMN to the level suitable for usage in humans are expected.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Mononucleotídeo de Nicotinamida/isolamento & purificação , Reatores Biológicos , Cromatografia em Gel , Escherichia coli/metabolismo , Espectrometria de Massas , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...