Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(16): 4861-4873, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29590753

RESUMO

Particle surface roughness and chemistry play a pivotal role in the design of new particle-based materials. Although the adsorption of rough particles has been studied in the literature, desorption of such particles remains poorly understood. In this work, we specifically focus on the detachment of rough and chemically modified raspberry-like microparticles from water/oil interfaces using colloidal-probe atomic force microscopy. We observe different contact-line dynamics occurring upon particle detachment (pinning vs sliding), depending on both the particle roughness and surface modification. In general, surface roughness leads to a reduction of the desorption force of hydrophobic particles into the oil and provides a multitude of pinning points that can be accessed by applying different loads. Our results hence suggest future strategies for stabilization and destabilization of Pickering emulsions and foams.

2.
Soft Matter ; 13(23): 4252-4259, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28573270

RESUMO

Active colloids, also known as artificial microswimmers, are self-propelled micro- and nanoparticles that convert uniform sources of fuel (e.g. chemical) or uniform external driving fields (e.g. magnetic or electric) into directed motion by virtue of asymmetry in their shape or composition. These materials are currently attracting enormous scientific attention as models for out-of-equilibrium systems and with the promise to be used as micro- and nanoscale devices. However, current fabrication of active colloids is limited in the choice of available materials, geometries, and modes of motion. Here, we use sequential capillarity-assisted particle assembly (sCAPA) to link microspheres of different materials into hybrid clusters of prescribed shapes ("colloidal molecules") that can actively translate, circulate and rotate powered by asymmetric electro-hydrodynamic flows. We characterize the active motion of the clusters and highlight the range of parameters (composition and shape) that can be used to tune their trajectories. Further engineering provides active colloids that switch motion under external triggers or perform simple pick-up and transport tasks. By linking their design, realization and characterization, our findings enable and inspire both physicists and engineers to create customized active colloids to explore novel fundamental phenomena in active matter and to investigate materials and propulsion schemes that are compatible with future applications.

3.
Nat Commun ; 8: 15701, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589932

RESUMO

Surface heterogeneities, including roughness, significantly affect the adsorption, motion and interactions of particles at fluid interfaces. However, a systematic experimental study, linking surface roughness to particle wettability at a microscopic level, is currently missing. Here we synthesize a library of all-silica microparticles with uniform surface chemistry, but tuneable surface roughness and study their spontaneous adsorption at oil-water interfaces. We demonstrate that surface roughness strongly pins the particles' contact lines and arrests their adsorption in long-lived metastable positions, and we directly measure the roughness-induced interface deformations around isolated particles. Pinning imparts tremendous contact angle hysteresis, which can practically invert the particle wettability for sufficient roughness, irrespective of their chemical nature. As a unique consequence, the same rough particles stabilize both water-in-oil and oil-in-water emulsions depending on the phase they are initially dispersed in. These results both shed light on fundamental phenomena concerning particle adsorption at fluid interfaces and indicate future design rules for particle-based emulsifiers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...