Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 946356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059537

RESUMO

Monitoring immune responses to SARS-CoV-2 vaccination and its clinical efficacy over time in Multiple Sclerosis (MS) patients treated with disease-modifying therapies (DMTs) help to establish the optimal strategies to ensure adequate COVID-19 protection without compromising disease control offered by DMTs. Following our previous observations on the humoral response one month after two doses of BNT162b2 vaccine (T1) in MS patients differently treated, here we present a cross-sectional and longitudinal follow-up analysis six months following vaccination (T2, n=662) and one month following the first booster (T3, n=185). Consistent with results at T1, humoral responses were decreased in MS patients treated with fingolimod and anti-CD20 therapies compared with untreated patients also at the time points considered here (T2 and T3). Interestingly, a strong upregulation one month after the booster was observed in patients under every DMTs analyzed, including those treated with fingolimod and anti-CD20 therapies. Although patients taking these latter therapies had a higher rate of COVID-19 infection five months after the first booster, only mild symptoms that did not require hospitalization were reported for all the DMTs analyzed here. Based on these findings we anticipate that additional vaccine booster shots will likely further improve immune responses and COVID-19 protection in MS patients treated with any DMT.


Assuntos
COVID-19 , Esclerose Múltipla , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos Transversais , Cloridrato de Fingolimode/uso terapêutico , Seguimentos , Humanos , Esclerose Múltipla/tratamento farmacológico , SARS-CoV-2 , Vacinação
2.
Front Immunol ; 12: 781843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956211

RESUMO

Objectives: Vaccination against COVID-19 is highly recommended to patients affected by multiple sclerosis (MS); however, the impact of MS disease-modifying therapies (DMTs) on the immune response following vaccination has been only partially investigated. Here, we aimed to elucidate the effect of DMTs on the humoral immune response to mRNA-based anti-SARS-CoV-2 vaccines in MS patients. Methods: We obtained sera from 912 Sardinian MS patients and 63 healthy controls 30 days after the second dose of BNT162b2 vaccine and tested them for SARS-CoV-2 response using anti-Spike (S) protein-based serology. Previous SARS-CoV-2 infection was assessed by anti-Nucleocapsid (N) serology. Patients were either untreated or undergoing treatment with a total of 13 different DMTs. Differences between treatment groups comprised of at least 10 patients were assessed by generalized linear mixed-effects model. Demographic and clinical data and smoking status were analyzed as additional factors potentially influencing humoral immunity from COVID-19 vaccine. Results: MS patients treated with natalizumab, teriflunomide, azathioprine, fingolimod, ocrelizumab, and rituximab showed significantly lower humoral responses compared to untreated patients. We did not observe a statistically significant difference in response between patients treated with the other drugs (dimethyl fumarate, interferon, alemtuzumab and glatiramer acetate) and untreated patients. In addition, older age, male sex and active smoking were significantly associated with lower antibody titers against SARS-CoV-2. MS patients previously infected with SARS-CoV-2 had significantly higher humoral responses to vaccine than uninfected patients. Conclusion: Humoral response to BNT162b2 is significantly influenced by the specific DMTs followed by patients, as well as by other factors such as previous SARS-CoV-2 infection, age, sex, and smoking status. These results are important to inform targeted strategies to prevent clinically relevant COVID-19 in MS patients.


Assuntos
Antirreumáticos/uso terapêutico , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Adulto , Anticorpos Antivirais/imunologia , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Soroconversão/efeitos dos fármacos
3.
Haematologica ; 106(2): 474-482, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32107331

RESUMO

The human fetal γ-globin gene is repressed in the adult stage through complex regulatory mechanisms involving transcription factors and epigenetic modifiers. Reversing γ-globin repression, or maintaining its expression by manipulating regulatory mechanisms, has become a major clinical goal in the treatment of ß-hemoglobinopathies. Here, we identify the orphan nuclear receptor Coup-TFII (NR2F2/ARP-1) as an embryonic/fetal stage activator of γ-globin expression. We show that Coup-TFII is expressed in early erythropoiesis of yolk sac origin, together with embryonic/fetal globins. When overexpressed in adult cells (including peripheral blood cells from human healthy donors and ß039 thalassemic patients) Coup-TFII activates the embryonic/fetal globins genes, overcoming the repression imposed by the adult erythroid environment. Conversely, the knock-out of Coup-TFII increases the ß/γ+ß globin ratio. Molecular analysis indicates that Coup-TFII binds in vivo to the ß-locus and contributes to its conformation. Overall, our data identify Coup-TFII as a specific activator of the γ-globin gene.


Assuntos
Receptores Nucleares Órfãos , gama-Globinas , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Proteínas de Transporte/genética , Humanos , Regiões Promotoras Genéticas , gama-Globinas/genética
4.
PLoS One ; 10(10): e0141083, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509275

RESUMO

The identification of drugs capable of reactivating γ-globin to ameliorate ß-thalassemia and Sickle Cell anemia is still a challenge, as available γ-globin inducers still have limited clinical indications. High-throughput screenings (HTS) aimed to identify new potentially therapeutic drugs require suitable first-step-screening methods combining the possibility to detect variation in the γ/ß globin ratio with the robustness of a cell line. We took advantage of a K562 cell line variant expressing ß-globin (ß-K562) to set up a new multiplexed high-content immunofluorescence assay for the quantification of γ- and ß-globin content at single-cell level. The assay was validated by using the known globin inducers hemin, hydroxyurea and butyric acid and further tested in a pilot screening that confirmed HDACs as targets for γ-globin induction (as proved by siRNA-mediated HDAC3 knockdown and by treatment with HDACs inhibitors entinostat and dacinostat) and identified Heme-oxygenases as novel candidate targets for γ-globin induction. Indeed, Heme-oxygenase2 siRNA knockdown as well as its inhibition by Tin protoporphyrin-IX (TinPPIX) greatly increased γ-globin expression. This result is particularly interesting as several metalloporphyrins have already been developed for clinical uses and could be tested (alone or in combination with other drugs) to improve pharmacological γ-globin reactivation for the treatment of ß-hemoglobinopathies.


Assuntos
Globinas beta/análise , gama-Globinas/análise , Anemia Falciforme/metabolismo , Ácido Butírico/metabolismo , Hemoglobina Fetal/metabolismo , Humanos , Hidroxiureia/metabolismo , Células K562 , Globinas beta/metabolismo , Talassemia beta/metabolismo , gama-Globinas/metabolismo
5.
Br J Haematol ; 126(6): 881-4, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15352994

RESUMO

The silent beta-thalassemia mutation, beta(+)-101C-->T, is the only mutation currently described in the distal beta-globin CACCC box. We present a novel mutation, a C-->G transversion, in the same position. Expression analysis in heterozygous subjects demonstrated that the mutation determines a 20% reduction in the output of the beta-globin gene. DNA-protein interaction and transactivation analysis correlated the decrease in the beta-globin synthesis with the reduced binding and transactivation of EKLF to the mutant promoter. These data predict that the beta-101C-->G mutation will display a silent thalassemia phenotype similar to that of the beta-101C-->T mutation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Globinas/genética , Mutação , Fatores de Transcrição/metabolismo , Talassemia beta/genética , Feminino , Expressão Gênica , Globinas/biossíntese , Humanos , Fatores de Transcrição Kruppel-Like , Regiões Promotoras Genéticas/genética , Ativação Transcricional , Talassemia beta/metabolismo
6.
Br J Haematol ; 127(1): 114-7, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15384985

RESUMO

The transcription factor erythroid Kruppel-like factor (EKLF) specifically activates the beta-globin gene by interacting with the proximal beta-globin CACCC box, a known hot spot for thalassaemia mutations. This study investigated whether EKLF could also bind to, and activate from, the distal CACCC, which is a rare site of thalassaemia mutations. Using band shift and transient expression analysis with wild type, single and double CACCC mutants, we established that the distal CACCC box is weakly bound by EKLF, but, when mutated, significantly impairs EKLF-dependent beta-globin stimulation. Thus, EKLF requires both CACCC boxes to maximally stimulate the beta-globin gene.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Globinas/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like , Camundongos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Ativação Transcricional , Talassemia beta/genética , Talassemia beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...