Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3003, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230966

RESUMO

It is generally considered that the elementary building blocks of defects in face-centred cubic (fcc) metals, e.g., interstitial dumbbells, coalesce directly into ever larger 2D dislocation loops, implying a continuous coarsening process. Here, we reveal that, prior to the formation of dislocation loops, interstitial atoms in fcc metals cluster into compact 3D inclusions of A15 Frank-Kasper phase. After reaching the critical size, A15 nano-phase inclusions act as a source of prismatic or faulted dislocation loops, dependent on the energy landscape of the host material. Using cutting-edge atomistic simulations we demonstrate this scenario in Al, Cu, and Ni. Our results explain the enigmatic 3D cluster structures observed in experiments combining diffuse X-ray scattering and resistivity recovery. Formation of compact nano-phase inclusions in fcc structure, along with previous observations in bcc structure, suggests that the fundamental mechanisms of interstitial defect formation are more complex than historically assumed and require a general revision. Interstitial-mediated formation of compact 3D precipitates can be a generic phenomenon, which should be further explored in systems with different crystallographic lattices.

2.
J Chem Theory Comput ; 18(10): 5864-5875, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073162

RESUMO

Sampling the minimum energy path (MEP) between two minima of a system is often hindered by the presence of an energy barrier separating the two metastable states. As a consequence, direct sampling based on molecular dynamics or Markov Chain Monte Carlo methods becomes inefficient, the crossing of the energy barrier being associated to a rare event. Augmented sampling methods based on the definition of collective variables or reaction coordinates allow us to circumvent this limitation at the price of an arbitrary choice of the dimensionality reduction algorithm. We couple the statistical sampling techniques, namely, metadynamics and invertible neural networks, with autoencoders so as to gradually learn the MEP and the collective variable at the same time. Learning is achieved through a succession of two steps: statistical sampling of the most probable path between the two minima and redefinition of the collective variable from the updated data points. The prototypical Mueller potential with nearly orthogonal minima is employed to demonstrate the ability of such coupling to unravel a complex MEP.


Assuntos
Simulação de Dinâmica Molecular , Redes Neurais de Computação , Algoritmos , Método de Monte Carlo , Termodinâmica
3.
Phys Chem Chem Phys ; 24(38): 23152-23163, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36128869

RESUMO

Free energy calculations in materials science are routinely hindered by the need to provide reaction coordinates that can meaningfully partition atomic configuration space, a prerequisite for most enhanced sampling approaches. Recent studies on molecular systems have highlighted the possibility of constructing appropriate collective variables directly from atomic motions through deep learning techniques. Here we extend this class of approaches to condensed matter problems, for which we encode the finite temperature collective variable by an iterative procedure starting from 0 K features of the energy landscape i.e. activation events or migration mechanisms given by a minimum - saddle point - minimum sequence. We employ the autoencoder neural networks in order to build a scalar collective variable for use with the adaptive biasing force method. Particular attention is given to design choices required for application to crystalline systems with defects, including the filtering of thermal motions which otherwise dominate the autoencoder input. The machine-learning workflow is tested on body-centered cubic iron and its common defects, such as small vacancy or self-interstitial clusters and screw dislocations. For localized defects, excellent collective variables as well as derivatives, necessary for free energy sampling, are systematically obtained. However, the approach has a limited accuracy when dealing with reaction coordinates that include atomic displacements of a magnitude comparable to thermal motions, e.g. the ones produced by the long-range elastic field of dislocations. We then combine the extraction of collective variables by autoencoders with an adaptive biasing force free energy method based on Bayesian inference. Using a vacancy migration as an example, we demonstrate the performance of coupling these two approaches for simultaneous discovery of reaction coordinates and free energy sampling in systems with localized defects.

4.
Nat Commun ; 11(1): 4691, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943615

RESUMO

This work revises the concept of defects in crystalline solids and proposes a universal strategy for their characterization at the atomic scale using outlier detection based on statistical distances. The proposed strategy provides a generic measure that describes the distortion score of local atomic environments. This score facilitates automatic defect localization and enables a stratified description of defects, which allows to distinguish the zones with different levels of distortion within the structure. This work proposes applications for advanced materials modelling ranging from the surrogate concept for the energy per atom to the relevant information selection for evaluation of energy barriers from the mean force. Moreover, this concept can serve for design of robust interatomic machine learning potentials and high-throughput analysis of their databases. The proposed definition of defects opens up many perspectives for materials design and characterization, promoting thereby the development of novel techniques in materials science.

5.
J Chem Theory Comput ; 16(7): 4399-4407, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32491851

RESUMO

The GW approximation to the electronic self-energy is now a well-recognized approach to obtain the electron quasiparticle energies of molecules and, in particular, their ionization potential and electron affinity. Though much faster than the corresponding wavefunction methods, the GW energies are still affected by slow convergence with respect to the basis completeness. This limitation hinders a wider application of the GW approach. Here, we show that we can reach the complete basis set limit for the cumbersome GW calculations solely based on fast preliminary calculations with an unconverged basis set. We introduce a linear model that correlates the molecular orbital characteristics and the basis convergence error for a large database of approximately 600 states in 104 organic molecules that contain H, C, O, N, F, P, S, and Cl. The model employs molecular-orbital-based non-linear descriptors that encode efficiently the chemical space offering outstanding transferability. Using a low number of descriptors (17) the performance of this extrapolation procedure is superior to that of the earlier more physically motivated approaches. The predictive power of the method is finally demonstrated for a selection of large acceptor molecules.

6.
Nat Mater ; 19(5): 508-511, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31988514

RESUMO

The diffusion of defects in crystalline materials1 controls macroscopic behaviour of a wide range of processes, including alloying, precipitation, phase transformation and creep2. In real materials, intrinsic defects are unavoidably bound to static trapping centres such as impurity atoms, meaning that their diffusion is dominated by de-trapping processes. It is generally believed that de-trapping occurs only by thermal activation. Here, we report the direct observation of the quantum de-trapping of defects below around one-third of the Debye temperature. We successfully monitored the de-trapping and migration of self-interstitial atom clusters, strongly trapped by impurity atoms in tungsten, by triggering de-trapping out of equilibrium at cryogenic temperatures, using high-energy electron irradiation and in situ transmission electron microscopy. The quantum-assisted de-trapping leads to low-temperature diffusion rates orders of magnitude higher than a naive classical estimate suggests. Our analysis shows that this phenomenon is generic to any crystalline material.

7.
Phys Rev Lett ; 120(13): 135503, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694211

RESUMO

The calculation of free energy differences for thermally activated mechanisms in the solid state are routinely hindered by the inability to define a set of collective variable functions that accurately describe the mechanism under study. Even when possible, the requirement of descriptors for each mechanism under study prevents implementation of free energy calculations in the growing range of automated material simulation schemes. We provide a solution, deriving a path-based, exact expression for free energy differences in the solid state which does not require a converged reaction pathway, collective variable functions, Gram matrix evaluations, or probability flux-based estimators. The generality and efficiency of our method is demonstrated on a complex transformation of C15 interstitial defects in iron and double kink nucleation on a screw dislocation in tungsten, the latter system consisting of more than 120 000 atoms. Both cases exhibit significant anharmonicity under experimentally relevant temperatures.

8.
J Chem Phys ; 143(13): 134121, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26450306

RESUMO

Transition path sampling is a method for estimating the rates of rare events in molecular systems based on the gradual transformation of a path distribution containing a small fraction of reactive trajectories into a biased distribution in which these rare trajectories have become frequent. Then, a multistate reweighting scheme is implemented to postprocess data collected from the staged simulations. Herein, we show how Bayes formula allows to directly construct a biased sample containing an enhanced fraction of reactive trajectories and to concomitantly estimate the transition rate from this sample. The approach can remediate the convergence issues encountered in free energy perturbation or umbrella sampling simulations when the transformed distribution insufficiently overlaps with the reference distribution.

9.
J Chem Phys ; 140(10): 104108, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628153

RESUMO

We propose an adiabatic reweighting algorithm for computing the free energy along an external parameter from adaptive molecular dynamics simulations. The adaptive bias is estimated using Bayes identity and information from all the sampled configurations. We apply the algorithm to a structural transition in a cluster and to the migration of a crystalline defect along a reaction coordinate. Compared to standard adaptive molecular dynamics, we observe an acceleration of convergence. With the aid of the algorithm, it is also possible to iteratively construct the free energy along the reaction coordinate without having to differentiate the gradient of the reaction coordinate or any biasing potential.

10.
J Chem Phys ; 137(19): 194107, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23181294

RESUMO

Transition path sampling is a rare-event method that estimates state-to-state time-correlation functions in many-body systems from samples of short trajectories. In this framework, it is proposed to bias the importance function using the lowest Jacobian eigenvalue moduli along the dynamical trajectory. A lowest eigenvalue modulus is related to the lowest eigenvalue of the Hessian matrix and is evaluated here using the Lanczos algorithm as in activation-relaxation techniques. This results in favoring the sampling of activated trajectories and enhancing the occurrence of the rare reactive trajectories of interest, those corresponding to transitions between locally stable states. Estimating the time-correlation functions involves unbiasing the sample of simulated trajectories which is done using the multi-state Bennett acceptance ratio (MBAR) method. To assess the performance of our procedure, we compute the time-correlation function associated with the migration of a vacancy in α-iron. The derivative of the estimated time-correlation function yields a migration rate in agreement with the one given by transition state theory. Besides, we show that the information relative to rejected trajectories can be recycled within MBAR, resulting in a substantial speed-up. Unlike original transition path-sampling, our approach does not require computing the reversible work to confine the trajectory endpoints to a reactive state.

11.
Nat Mater ; 11(10): 845-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22886068

RESUMO

Crystal plasticity involves the motion of dislocations under stress. So far, atomistic simulations of this process have predicted Peierls stresses, the stress needed to overcome the crystal resistance in the absence of thermal fluctuations, of more than twice the experimental values, a discrepancy best-known in body-centred cubic crystals. Here we show that a large contribution arises from the crystal zero-point vibrations, which ease dislocation motion below typically half the Debye temperature. Using Wigner's quantum transition state theory in atomistic models of crystals, we found a large decrease of the kink-pair formation enthalpy due to the quantization of the crystal vibrational modes. Consequently, the flow stress predicted by Orowan's law is strongly reduced when compared with its classical approximation and in much closer agreement with experiments. This work advocates that quantum mechanics should be accounted for in simulations of materials and not only at very low temperatures or in light-atom systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...