Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Drug Resist ; 30(3): 118-126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330414

RESUMO

Nontyphoid salmonella can cause severe infections in newborns and is therefore declared a pathogen of major health significance at this age. The aim of the study was molecular and antimicrobial characterization of ß-lactamase-producing Salmonella Mikawasima outbreak clone on a Neonatal ward, University Hospital of Split (UHS), Croatia during the COVID-19 pandemic. From April 2020, until April 2023, 75 nonrepetitive strains of Salmonella Mikawasima were isolated from stool specimens and tested for antimicrobial resistance. All 75 isolates were resistant to ampicillin and gentamicin, while 98% of isolates were resistant to amoxicillin/clavulanic acid. A high level of resistance was observed to third-generation cephalosporins (36% to ceftriaxone and 47% to ceftazidime). Extended-spectrum ß-lactamase production was phenotypically detected by double-disk synergy test in 40% of isolates. Moderate resistance to quinolones was detected; 7% of isolates were resistant to pefloxacin and ciprofloxacin. All isolates were susceptible to carbapenems, chloramphenicol, and co-trimoxazole. Fourteen representative isolates, from 2020, 2021, 2022, and 2023, were analyzed with PFGE and all of them belong to the same clone. Whole-genome sequencing (WGS) analysis of three outbreak-related strains (SM1 and SM2 from 2020 and SM3 from 2023) confirmed that these strains share the same serotype (Mikawasima), multilocus sequence typing profile (ST2030), resistance genes [blaTEM-1B, aac(6')-Iaa, aac(6')-Im, and aph(2'')-Ib)] and carry incompatibility group C (IncC) plasmid. Furthermore, the gene blaSHV-2 was detected in SM1 and SM2. In summary, WGS analysis of three representative strains clearly demonstrates the persistence of ß-lactamase-producing Salmonella Mikawasima in UHS during the 4-year period.


Assuntos
COVID-19 , Salmonella enterica , Recém-Nascido , Humanos , Antibacterianos/farmacologia , Sorogrupo , Pandemias , Salmonella enterica/genética , Testes de Sensibilidade Microbiana , COVID-19/epidemiologia , Salmonella , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Hospitais
2.
Int J Antimicrob Agents ; 63(5): 107115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367844

RESUMO

INTRODUCTION: The ESCPM group (Enterobacter species including Klebsiella aerogenes - formerly Enterobacter aerogenes, Serratia species, Citrobacter freundii complex, Providencia species and Morganella morganii) has not yet been incorporated into systematic surveillance programs. METHODS: We conducted a multicentre retrospective observational study analysing all ESCPM strains isolated from blood cultures in 27 European hospitals over a 3-year period (2020-2022). Diagnostic approach, epidemiology, and antimicrobial susceptibility were investigated. RESULTS: Our study comprised 6,774 ESCPM isolates. MALDI-TOF coupled to mass spectrometry was the predominant technique for bacterial identification. Susceptibility to new ß-lactam/ß-lactamase inhibitor combinations and confirmation of AmpC overproduction were routinely tested in 33.3% and 29.6% of the centres, respectively. The most prevalent species were E. cloacae complex (44.8%) and S. marcescens (22.7%). Overall, third-generation cephalosporins (3GC), combined third- and fourth-generation cephalosporins (3GC + 4GC) and carbapenems resistance phenotypes were observed in 15.7%, 4.6%, and 9.5% of the isolates, respectively. AmpC overproduction was the most prevalent resistance mechanism detected (15.8%). Among carbapenemase-producers, carbapenemase type was provided in 44.4% of the isolates, VIM- (22.9%) and OXA-48-enzyme (16%) being the most frequently detected. E. cloacae complex, K. aerogenes and Providencia species exhibited the most notable cumulative antimicrobial resistance profiles, with the former displaying 3GC, combined 3GC + 4GC and carbapenems resistance phenotypes in 15.2%, 7.4%, and 12.8% of the isolates, respectively. K. aerogenes showed the highest rate of both 3GC resistant phenotype (29.8%) and AmpC overproduction (32.1%), while Providencia species those of both carbapenems resistance phenotype (42.7%) and carbapenemase production (29.4%). ESCPM isolates exhibiting both 3GC and combined 3GC + 4GC resistance phenotypes displayed high susceptibility to ceftazidime/avibactam (98.2% and 95.7%, respectively) and colistin (90.3% and 90.7%, respectively). Colistin emerged as the most active drug against ESCPM species (except those intrinsically resistant) displaying both carbapenems resistance phenotype (85.8%) and carbapenemase production (97.8%). CONCLUSIONS: This study presented a current analysis of ESCPM species epidemiology in Europe, providing insights to inform current antibiotic treatments and guide strategies for antimicrobial stewardship and diagnostics.


Assuntos
Antibacterianos , Proteínas de Bactérias , Infecções por Enterobacteriaceae , Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Europa (Continente)/epidemiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Estudos Retrospectivos , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/enzimologia , Enterobacteriaceae/isolamento & purificação , Hospitais , Inibidores de beta-Lactamases/farmacologia , Farmacorresistência Bacteriana Múltipla
3.
Pharmaceutics ; 14(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36297475

RESUMO

(S)-ketamine presents potential for the management of acute pain and, more specifically, for the prevention of pain associated with care. However, the administration route can be a source of pain and distress. In this context, a smart formulation of (S)-ketamine was designed for buccal administration. The combination of poloxamer 407 and sodium alginate enables increased contact with mucosa components (mucins) to improve the absorption of (S)-ketamine. In this study, rheological studies allowed us to define the concentration of P407 to obtain a gelling temperature around 32 °C. Mucoadhesion tests by the synergism method were carried out to determine the most suitable alginate among three grades and its quantity to optimize its mucoadhesive properties. Protanal LF 10/60 was found to be the most effective in achieving interaction with mucins in simulated saliva fluid. P407 and alginate concentrations were set to 16% and 0.1%. Then, the impact of P407 batches was also studied and significant batch-to-batch variability in rheological properties was observed. However, in vitro drug release studies demonstrated that this variability has no significant impact on the drug release profile. This optimized formulation has fast release, which provides potential clinical interest, particularly in emergencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...