Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 11252, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050165

RESUMO

Semiconducting single walled carbon nanotubes (s-SWNT) have an immense potential for the development of active optoelectronic functionalities in ultra-compact hybrid photonic circuits. Specifically, s-SWNT have been identified as a very promising solution to implement light sources in the silicon photonics platform. Still, two major challenges remain to fully exploit the potential of this hybrid technology: the limited interaction between s-SWNTs and Si waveguides and the low quantum efficiency of s-SWNTs emission. Silicon micro-ring resonators have the potential capability to overcome these limitations, by providing enhanced light s-SWNT interaction through resonant light recirculation. Here, we demonstrate that Si ring resonators provide SWNT chirality-wise photoluminescence resonance enhancement, releasing a new degree of freedom to tailor s-SWNT optical properties. Specifically, we show that judicious design of the micro-ring geometry allows selectively promoting the emission enhancement of either (8,6) or (8,7) SWNT chiralities present in a high-purity polymer-sorted s-SWNT solution. In addition, we present an analysis of nanometric-sized silicon-on-insulator waveguides that predicts stronger light s-SWNT interaction for transverse-magnetic (TM) modes than for conventionally used transverse-electric (TE) modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...