Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1326779, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318146

RESUMO

The control of parasitic nematode infections relies mostly on anthelmintics. The potential pharmacotherapeutic application of phytochemicals, in order to overcome parasite resistance and enhance the effect of existing drugs, is becoming increasingly important. The antinematodal effects of carveol was tested on the free-living nematode Caenorhabditis elegans and the neuromuscular preparation of the parasitic nematode Ascaris suum. Carveol caused spastic paralysis in C. elegans. In A. suum carveol potentiated contractions induced by acetylcholine (ACh) and this effect was confirmed with two-electrode voltage-clamp electrophysiology on the A. suum nicotinic ACh receptor expressed in Xenopus oocytes. However, potentiating effect of carveol on ACh-induced contractions was partially sensitive to atropine, indicates a dominant nicotine effect but also the involvement of some muscarinic structures. The effects of carveol on the neuromuscular system of mammals are also specific. In micromolar concentrations, carveol acts as a non-competitive ACh antagonist on ileum contractions. Unlike atropine, it does not change the EC50 of ACh, but reduces the amplitude of contractions. Carveol caused an increase in Electrical Field Stimulation-evoked contractions of the isolated rat diaphragm, but at higher concentrations it caused an inhibition. Also, carveol neutralized the mecamylamine-induced tetanic fade, indicating a possibly different pre- and post-synaptic action at the neuromuscular junction.

2.
Pharmaceuticals (Basel) ; 14(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073197

RESUMO

Parascaris sp. is the only ascarid parasitic nematode in equids and one of the most threatening infectious organisms in horses. Only a limited number of compounds are available for treatment of horse helminthiasis, and Parascaris sp. worms have developed resistance to the three major anthelmintic families. In order to overcome the appearance of resistance, there is an urgent need for new therapeutic strategies. The active ingredients of herbal essential oils are potentially effective antiparasitic drugs. Carvacrol is one of the principal chemicals of essential oil from Origanum, Thymus, Coridothymus, Thymbra, Satureja and Lippia herbs. However, the antiparasitic mode of action of carvacrol is poorly understood. Here, the objective of the work was to characterize the activity of carvacrol on Parascaris sp. nicotinic acetylcholine receptor (nAChR) function both in vivo with the use of worm neuromuscular flap preparations and in vitro with two-electrode voltage-clamp electrophysiology on nAChRs expressed in Xenopus oocytes. We developed a neuromuscular contraction assay for Parascaris body flaps and obtained acetylcholine concentration-dependent contraction responses. Strikingly, we observed that 300 µM carvacrol fully and irreversibly abolished Parascaris sp. muscle contractions elicited by acetylcholine. Similarly, carvacrol antagonized acetylcholine-induced currents from both the nicotine-sensitive AChR and the morantel-sensitive AChR subtypes. Thus, we show for the first time that body muscle flap preparation is a tractable approach to investigating the pharmacology of Parascaris sp. neuromuscular system. Our results suggest an intriguing mode of action for carvacrol, being a potent antagonist of muscle nAChRs of Parascaris sp. worms, which may account for its antiparasitic potency.

3.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-33860255

RESUMO

Resistance of parasitic nematodes to anthelmintic drugs is a growing problem in human and veterinary medicine. The molecular mechanisms by which nematodes become resistant are different, but certainly one of the possible processes involves changing the drug binding site on the specific receptor. The significance of changes in individual subtypes of nicotinic acetylcholine receptors (nAChRs) for the development of resistance has not been clarified in detail. This study investigates the interaction of antinematodal drugs, agonist of different types of nAChRs and carvacrol with gamma aminobutyric acid (GABA) on the contractions of parasitic nematode A. suum. In our study, GABA (3 µM) produced significant increase of contractile EC50 value for pyrantel, and nonsignificant for bephenium and morantel, from 8.44 to 28.11 nM, 0.62 to 0.96 µM, and 3.72 to 5.69 nM, respectively. On the other hand, the maximal contractile effect (R max) did not change in the presence of GABA. However, when A. summ muscle flaps were incubated with GABA 3 µM and carvacrol 100 µM, the EC50 value of pyrantel, bephenium, and morantel was increased significantly to 44.62 nM, 1.40 µM, and nonsignificantly to 7.94 nM, respectively. Furthermore, R max decreased by 70, 60, and 65%. Presented results indicate that the combined use of GABA receptor agonists and nicotinic receptor antagonists can effectively inhibit the neuromuscular system of nematodes, even when one of the nicotinic receptor subtypes is dysfunctional, due to the potential development of resistance.

4.
Mol Biochem Parasitol ; 242: 111350, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422580

RESUMO

Parasitic infections are a widespread health problem and research of novel anthelmintic compounds is of the utmost importance. In this study we performed a virtual screening campaign by coupling ligand-based pharmacophore, homology modeling and molecular docking. The virtual screening campaign was conducted using a joined pool of the Drugbank database and a library of purchasable compounds in order to identify drug like compounds with similar pharmacological activity. Our aim was to identify compounds with a potential antihelmintic modulatory effect on nicotinic acetylcholine receptors (nAChR). We derived a 3D pharmacophore model based on the chemical features of known Ascaris suum nAChR modulators. To evaluate the in silico predictions, we tested selected hit compounds in contraction assays using somatic muscle flaps of the Ascaris suum neuromuscular tissue. We tested the modulatory effects of GSK575594A, diazepam and flumazenil hit compounds on nematode contractions induced by acetyl choline (ACh). The compound GSK575594A (3 µM) increased the Emax by 21 % with the EC50 dose ratio of 0.96. Diazepam (100 µM) decreased the Emax by 15 % (1.11 g to 0.95 g) with the EC50 ratio of 1.42 (shifted to the left from 11.25 to 7.93). Flumazenil decreased the EC50 value (from 11.22 µM to 4.88 µM) value showing dose ratio of 2.30, and increased the Emax by 4 % (from 1.54 g to 1.59 g). The observed biological activity was rationalized by molecular docking calculations. Docking scores were calculated against several binding sites within the Ascaris suum homology model. We constructed the homology model using the ACR-16 subunit sequence. The compound GSK575594A showed strong affinity for the intersubunit allosteric binding site within the nAChR transmembrane domain. The binding modes of diazepam and flumazenil suggest that these compounds have a comparable affinity for orthosteric and allosteric nAChR binding sites. The selected hit compounds displayed potential for further optimization as lead compounds. Therefore, such compounds may be useful in neutralizing the growing resistance of parasites to drugs, either alone or in combination with existing conventional anthelmintics.


Assuntos
Anti-Helmínticos/farmacologia , Diazepam/farmacologia , Flumazenil/farmacologia , Proteínas de Helminto/química , Músculos/efeitos dos fármacos , Piperazinas/farmacologia , Receptores Nicotínicos/química , Acetilcolina/farmacologia , Animais , Anti-Helmínticos/química , Ascaris suum/efeitos dos fármacos , Ascaris suum/metabolismo , Sítios de Ligação , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Bases de Dados de Compostos Químicos , Diazepam/química , Flumazenil/química , Expressão Gênica , Proteínas de Helminto/agonistas , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Simulação de Acoplamento Molecular , Piperazinas/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Homologia Estrutural de Proteína , Técnicas de Cultura de Tecidos , Interface Usuário-Computador
5.
Vet Parasitol ; 278: 109031, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32032866

RESUMO

The neuromuscular system of parasitic nematodes has proven to be an efficient pharmacological target for antihelmintics. Some of the most frequently used antiparasitic drugs are agonists or antagonists of nicotinic acetylcholine receptors (nAChRs). The antinematodal mechanism of action of carvacrol involves the inhibition of parasite muscle contraction. We have examined the interaction of carvacrol with antinematodal drugs that are agonists of different subtypes of nAChRs and monepantel, which is a non-competitive antagonist of this receptor in A. suum. Additionally, we investigated the effect of carvacrol on the muscle type of nAChRs in the mammalian host. As orthosteric agonists of nAChR, pyrantel, morantel and befinijum lead to dose-dependent contractions of the neuromuscular preparation of Ascaris suum. Carvacrol 100 µM decreased the Emax of pyrantel, morantel and bephenium by 29%, 39% and 12 %, 39 % and 12 % respectively. The EC50 ratio was 3.43, 2.95 and 2.47 for pyrantel, morantel and bephinium, respectively. Carvacrol 300 u µM reduces the Emax of pyrantel, morantel and bephenium by 71%, 80% and 75 %, 80 % and 75 % respectively. The EC50 ratio for pyrantel, morantel and bephenium was 3.88, 3.19 and 4.83 respectively. Furthermore, carvacrol enhances the inhibitory effect of monepantel on A. suum contractions, which may have an effective clinical application. On the other hand, tested concentrations of carvacrol did not significantly affect the EFS-induced contractions of the rat diaphragm, indicating a lack of interaction with the postsynaptic nAChR at the muscle end plate in mammals, but the highest concentration (300 µM) caused a clear tetanic fade. Carvacrol exhibited a time and dose-dependent effect on the Rota-rod performances of rats with a high value of the ED50 (421.6 mg/kg). In our research, carvacrol dominantly exhibited characteristics of a non-competitive antagonist of nAChR in A. suum, and enhances the inhibitory effect of monepantel. The combination of monepantel and carvacrol may be clinically very effective, and the carvacrol molecule itself can be used as a promising platform for the development of new anthelmintic drugs.


Assuntos
Aminoacetonitrila/análogos & derivados , Antinematódeos/farmacologia , Ascaris suum/efeitos dos fármacos , Cimenos/farmacologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Aminoacetonitrila/farmacologia , Animais , Sistema Nervoso Central/efeitos dos fármacos , Diafragma/efeitos dos fármacos , Feminino , Músculos/efeitos dos fármacos , Ratos
6.
Int J Parasitol Drugs Drug Resist ; 8(1): 36-42, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29366967

RESUMO

Zolvix® is a recently introduced anthelmintic drench containing monepantel as the active ingredient. Monepantel is a positive allosteric modulator of DEG-3/DES-2 type nicotinic acetylcholine receptors (nAChRs) in several nematode species. The drug has been reported to produce hypercontraction of Caenorhabditis elegans and Haemonchus contortus somatic muscle. We investigated the effects of monepantel on nAChRs from Ascaris suum and Oesophagostomum dentatum heterologously expressed in Xenopus laevis oocytes. Using two-electrode voltage-clamp electrophysiology, we studied the effects of monepantel on a nicotine preferring homomeric nAChR subtype from A. suum comprising of ACR-16; a pyrantel/tribendimidine preferring heteromeric subtype from O. dentatum comprising UNC-29, UNC-38 and UNC-63 subunits; and a levamisole preferring subtype (O. dentatum) comprising UNC-29, UNC-38, UNC-63 and ACR-8 subunits. For each subtype tested, monepantel applied in isolation produced no measurable currents thereby ruling out an agonist action. When monepantel was continuously applied, it reduced the amplitude of acetylcholine induced currents in a concentration-dependent manner. In all three subtypes, monepantel acted as a non-competitive antagonist on the expressed receptors. ACR-16 from A. suum was particularly sensitive to monepantel inhibition (IC50 values: 1.6 ±â€¯3.1 nM and 0.2 ±â€¯2.3 µM). We also investigated the effects of monepantel on muscle flaps isolated from adult A. suum. The drug did not significantly increase baseline tension when applied on its own. As with acetylcholine induced currents in the heterologously expressed receptors, contractions induced by acetylcholine were antagonized by monepantel. Further investigation revealed that the inhibition was a mixture of competitive and non-competitive antagonism. Our findings suggest that monepantel is active on multiple nAChR subtypes.


Assuntos
Aminoacetonitrila/análogos & derivados , Ascaris suum/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Oesophagostomum/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Acetilcolina/farmacologia , Aminoacetonitrila/farmacologia , Animais , Anti-Helmínticos/farmacologia , Ascaris suum/citologia , Eletrofisiologia/métodos , Músculos/efeitos dos fármacos , Músculos/fisiologia , Oesophagostomum/citologia , Oócitos , Receptores Nicotínicos/genética , Xenopus laevis/genética
7.
Res Vet Sci ; 112: 18-25, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28107667

RESUMO

Acute poisoning with OPs may lead to a range of neurological effects, which cannot be explained by AChE inhibition alone. Several OPs interact directly with cholinergic receptors in mammals, but such data does not exist for invertebrates. The aim of current study was to investigate the direct and indirect effects of diazinon on the contractions of rat ileum and to compare those effects on the nervemuscle preparation of the Ascaris suum. In the presence of increasing concentrations of diazinon (3, 10 and 30nM), EFS-induced ileal contractions were increased significantly. In the same preparation, diazinon 3nM, significantly increased contractions induced by EFS, but did not affect the contractions caused by 5MFI. Contrarily, 1µM of diazinon significantly and reversibly inhibited the EFS-induced ileal contractions. Diazinon exhibited competitive and non-competitive inhibitions of 5MFI induced contractions. The control EC50 of 5MFI was 2.48µM with Rmax=1.88g. In the presence of diazinon, EC50 was 12.45µM, while Rmax was reduced to 0.43g. After washing, the EC50 and Rmax values were again closer to the control level (3.80µM and 1.04g). Diazinon 1µM did not inhibit Ascaris suum contractions caused by ACh, but it increased the Rmax. Diazinon in our study exhibits two opposite effects on the motor activity of the ileum. In low nanomolar concentrations the dominat is its effect on AChE and the stimulation of contractions. Furthermore, in concentrations that approach micromolar values diazinon has a direct inhibitory effect on muscarinic receptors. The direct inhibitory effect of diazinon on A. suum contractions was not found.


Assuntos
Diazinon/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Íleo/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/farmacologia , Diazinon/administração & dosagem , Relação Dose-Resposta a Droga , Estimulação Elétrica , Íleo/fisiologia , Técnicas In Vitro , Ratos , Receptores Muscarínicos
8.
Exp Parasitol ; 159: 136-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26429130

RESUMO

Motility is required for feeding, reproduction and maintenance of the fluke in the host's liver. According to that, the neuromuscular system can be an attractive drugable target for chemotherapy. Musculature of the Fascioloides magna is organized into three layers, an outer circular layer, beneath this layer the longitudinal layer, and third, the oblique, or diagonal layer underlies the longitudinal layer. In our study, the administration of atropine or caffeine did not cause classic muscle contractions of F. magna muscle strips. However, the Electrical Field Stimulation (EFS) induced stable and repeatable contractions, which enabled us to examine their sensitivity to the various substances. Acetylcholine (ACh) (300 µM and 1 mM), caused only a slight relaxation, without affecting the amplitude of spontaneous contractions or the amplitude of contractions induced by EFS. Contrary to that, atropine (100 µM) caused a significant increase in the basal tone and an increase of EFS-induced contractions. If acetylcholine is an inhibitory neurotransmitter in trematodes, the described effects of atropine are achieved by the blockade of inhibitory neurotransmission. On the other hand, with respect to the process of excitation-contraction coupling, the plant alkaloid ryanodine (30 µM) significantly reduced the basal tone, as well as EFS-induced contractions of F. magna muscle strips. Ryanodine inhibited the potentiating effect of atropine on the basal tone and contractions caused by EFS, which indicates that the contractile effect of atropine is dependent on Ca(++) release from intracellular stores. Caffeine (500 µM) caused relaxation of fluke muscle strips and at the same time significantly enhanced the EFS-induced contractions. Both effects of caffeine can be explained by entry of extracellular Ca(++) into muscle cells. The muscle contractility of F. magna depends both on the entry of extracellular calcium, and calcium release from intracellular stores, which are under the control of RyRs. Our results also suggest that antitrematodal drugs could potentially be developed from substances with selective anti-cholinergic activity.


Assuntos
Cervos/parasitologia , Fasciolidae/anatomia & histologia , Fasciolidae/efeitos dos fármacos , Neurotransmissores/farmacologia , Infecções por Trematódeos/veterinária , Acetilcolina/farmacologia , Animais , Atropina/farmacologia , Cafeína/farmacologia , Estimulação Elétrica , Fasciolidae/fisiologia , Movimento/efeitos dos fármacos , Movimento/fisiologia , Contração Muscular/efeitos dos fármacos , Músculos/anatomia & histologia , Músculos/efeitos dos fármacos , Músculos/fisiologia , Rianodina/farmacologia , Infecções por Trematódeos/tratamento farmacológico , Infecções por Trematódeos/parasitologia
9.
Parasitol Res ; 114(8): 3059-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25944741

RESUMO

Essential plant oils (or their active principles) are safe to use and a potentially attractive alternative to current antiparasitic drugs. In the present study, we tested the effects of carvacrol on the isolated tissues of Ascaris suum and investigated potential interactions with other antiparasitic drugs. We used somatic muscle flaps for contraction assays, as well as for electrophysiological investigations. Carvacrol 300 µM highly significantly inhibited contractions caused by 1, 3, 10, 30, and 100 µM of ACh (p = 0.0023, p = 0.0002, p = 0.0002, p < 0.0001, and p < 0.0001). The control EC50 for acetylcholine was 8.87 µM (log EC50 = 0.95 ± 0.26), while R max was 2.53 ± 0.24 g. The EC50 of acetylcholine in the presence of 300 µM of carvacrol was 27.71 µM (log EC50 = 1.44 ± 0.28) and the R max decreased to 1.63 ± 0.32 g. Furthermore, carvacrol highly significant potentiates inhibitory effect of GABA and piperazine on the contractions induced by ACh. However, carvacrol (100 and 300 µM), did not produce any changes in the membrane potential or conductance of the A. suum muscle cell. While, 300 µM of carvacrol showed a significant inhibitory effect on ACh-induced depolarization response. The mean control depolarization was 13.58 ± 0.66 mV and decreased in presence of carvacrol to 4.50 ± 1.02 mV (p < 0.0001). Mean control Δg was 0.168 ± 0.017 µS, while in the presence of 300 µM of carvacrol, Δg significantly decreased to 0.060 ± 0.018 ΔS (p = 0.0017). The inhibitory effect on contractions may be the explanation of the antinematodal potential of carvacrol. Moreover, inhibition of depolarizations caused by ACh and reduction of conductance changes directly points to an interaction with the nAChR in A. suum.


Assuntos
Antinematódeos/farmacologia , Ascaris suum/efeitos dos fármacos , Monoterpenos/farmacologia , Receptores de GABA/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Animais , Antinematódeos/química , Cimenos , Potenciais da Membrana/efeitos dos fármacos , Monoterpenos/química , Músculos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...