Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-445114

RESUMO

Since December 2019, the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread throughout the world. To eradicate it, it is crucial to acquire a strong and long-lasting anti-SARS-CoV-2 immunity, by either natural infection or vaccination. We collected blood samples 12-305 days after positive polymerase chain reactions (PCRs) from 35 recovered individuals infected by SARS-CoV-2. Peripheral blood mononuclear cells were stimulated with SARS-CoV-2-derived peptide pools, such as the Spike (S), Nucleocapsid (N), and Membrane (M) proteins, and we quantified anti-S immunoglobulins in plasma. After 10 months post-infection, we observed a sustained SARS-CoV-2-specific CD4+ T-cell response directed against M-protein, but responses against S- or N-proteins were lost over time. Besides, we demonstrated that A-group individuals presented significantly higher frequencies of specific CD4+ T-cell responses against Pep-M than O-group individuals. The A-group subjects also needed longer to clear the virus and they lost cellular immune responses over time, compared to the O-group individuals, who showed a persistent specific immune response against SARS-CoV-2. Therefore, the S-specific immune response was lost over time, and individual factors determine the sustainability of the bodys defences, which must be considered in the future design of vaccines to achieve continuous anti-SARS-CoV-2 immunity. SummaryThis work describes that cellular responses against SARS-CoV-2 M-protein can be detected after 10 months but were lost against S- and N-proteins. Moreover, the individual factors; ABO-group and age influence the sustainability of the specific humoral and cellular immunity against SARS-CoV-2.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436441

RESUMO

The rapid development and deployment of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has been questioned. Here we characterized SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during full BNT162b2 vaccination. Our results demonstrate that the second dose increases both the humoral and cellular immunity in naive individuals. On the contrary, the second BNT162b2 vaccine dose results in a reduction of cellular immunity in COVID-19 recovered individuals, which suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...