Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Sport Health Sci ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604409

RESUMO

BACKGROUND: The benefits of exercise are well known; however, many of the underlying molecular mechanisms are not fully understood. Skeletal muscle secretes myokines, which mediate muscle-organ crosstalk. Myokines regulate satellite-cell proliferation and migration, inflammatory cascade, insulin secretion, angiogenesis, fatty oxidation, and cancer suppression. To date, the effects of different exercise modes (namely, aerobic and resistance exercise) on myokine response remain to be elucidated. This is crucial considering the clinical implementation of exercise to enhance general health and wellbeing and as a medical treatment. METHODS: A systematic search was undertaken in PubMed, Medline, CINAHL, Embase, SPORTDiscus, and Web of Science in April 2023. Eligible studies examining the effects of a single bout of exercise on interleukin15 (IL-15), irisin, secreted protein acidic and rich in cysteine (SPARC), oncostatin M (OSM), and decorin were included. A random-effects meta-analysis was also undertaken to quantify the magnitude of change. RESULTS: Sixty-two studies were included (n = 1193). Overall, exercise appeared to induce small to large increases in myokine expression, with effects observed immediately after to 60 min post-exercise, although these were mostly not statistically significant. Both aerobic and resistance exercise resulted in changes in myokine levels, without any significant difference between training modes, and with the magnitude of change differing across myokines. Myokine levels returned to baseline levels within 180 min to 24 h post-exercise. However, owing to potential sources of heterogeneity, most changes were not statistically significant, indicating that precise conclusions cannot be drawn. CONCLUSION: Knowledge is limited but expanding with respect to the impact of overall and specific effects of exercise on myokine expression at different time points in the systemic circulation. Further research is required to investigate the effects of different exercise modes at multiple time points on myokine response.

2.
J Strength Cond Res ; 38(4): 804-814, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38090747

RESUMO

ABSTRACT: Molinari, T, Radaelli, R, Rech, A, Brusco, CM, Markarian, AM, and Lopez, P. Moderators of resistance training effects in healthy young women: A systematic review and meta-analysis. J Strength Cond Res 38(4): 804-814, 2024-To systematically review and analyze the effects of resistance-based exercise programs and potential moderators of change in body fat percentage, whole-body fat and lean mass, muscle hypertrophy, muscle strength, and muscle power/rapid force in healthy young women (between 18 and 35 years). A systematic search was undertaken in 7 databases from inception to May 2022. Eligible randomized controlled trials examined the effects of resistance-based exercise programs on outcomes of interest in healthy young women. Meta-analysis was undertaken with a 3-level mixed-effects model. Associations between standardized mean difference (SMD) and potential moderators (number of sessions, weekly volume, and intensity) were tested by meta-regression models. Statistical significance was set at an α level of 0.05, whereas an α level of 0.05-0.10 was also considered for potential moderators of resistance training effects. Forty articles ( n = 1,312) were included. Resistance-based exercise programs resulted in a significant improvement of 0.4 SMD (95% confidence intervals [95% CI]: 0.2 to 0.5, p < 0.001) in lean mass/muscle hypertrophy and 1.2 SMD (95% CI: 0.9 to 1.5, p < 0.001) in muscle strength. A higher number of sessions was associated with changes in lean mass/muscle hypertrophy ( ß = 0.01 ± 0.00, p = 0.009), whereas a higher weekly volume approached statistical significance to moderate changes in muscle strength ( ß = 0.01 ± 0.01, p = 0.053). Body fat percentage (-0.4 SMD, 95% CI: -0.6 to -0.1, p = 0.006) and muscle power/rapid force (0.6 SMD, 95% CI: 0.2 to 1.1, p = 0.011) were significantly improved. In conclusion, a higher resistance training volume was associated with greater improvements in lean mass/muscle hypertrophy, muscle strength, and body fat percentage, whereas muscle power/rapid force improvements were observed irrespective of prescription characteristics. These findings may help in designing resistance training programs for muscle hypertrophy, strength and power, and body fat percentage in healthy women.


Assuntos
Treinamento Resistido , Humanos , Feminino , Treinamento Resistido/métodos , Nível de Saúde , Exercício Físico , Força Muscular , Hipertrofia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...