Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 443: 138572, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295570

RESUMO

This study aims to characterize a complete volatile organic compound profile of pork neck fat for boar taint prediction. The objectives are to identify specific compounds related to boar taint and to develop a classification model. In addition to the well-known androstenone, skatole and indole, 10 other features were found to be discriminant according to untargeted volatolomic analyses were conducted on 129 samples using HS-SPME-GC×GC-TOFMS. To select the odor-positive samples among the 129 analyzed, the selection was made by combining human nose evaluations with the skatole and androstenone concentrations determined using UHPLC-MS/MS. A comparison of the data of the two populations was performed and a statistical model analysis was built on 70 samples out of the total of 129 samples fully positive or fully negative through these two orthogonal methods for tainted prediction. Then, the model was applied to the 59 remaining samples. Finally, 7 samples were classified as tainted.


Assuntos
Carne de Porco , Carne Vermelha , Suínos , Masculino , Animais , Humanos , Escatol/análise , Espectrometria de Massas em Tandem , Carne de Porco/análise , Carne Vermelha/análise , Odorantes/análise , Carne/análise
2.
Metabolites ; 12(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422251

RESUMO

Mass spectrometry (MS)-based techniques, including liquid chromatography coupling, shotgun lipidomics, MS imaging, and ion mobility, are widely used to analyze lipids. However, with enhanced separation capacity and an optimized chemical derivatization approach, comprehensive two-dimensional gas chromatography (GC×GC) can be a powerful tool to investigate some groups of small lipids in the framework of lipidomics. This study describes the optimization of a dedicated two-stage derivatization and extraction process to analyze different saturated and unsaturated fatty acids in plasma by two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) using a full factorial design. The optimized condition has a composite desirability of 0.9159. This optimized sample preparation and chromatographic condition were implemented to differentiate between positive (BT) and negative (UT) boar-tainted pigs based on fatty acid profiling in pig serum using GC×GC-TOFMS. A chemometric screening, including unsupervised (PCA, HCA) and supervised analysis (PLS-DA), as well as univariate analysis (volcano plot), was performed. The results suggested that the concentration of PUFA ω-6 and cholesterol derivatives were significantly increased in BT pigs, whereas SFA and PUFA ω-3 concentrations were increased in UT pigs. The metabolic pathway and quantitative enrichment analysis suggest the significant involvement of linolenic acid metabolism.

3.
Foods ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200407

RESUMO

Boar taint detection is a major concern for the pork industry. Currently, this taint is mainly detected through a sensory evaluation. However, little is known about the entire volatile organic compounds (VOCs) profile perceived by the assessor. Additionally, many research groups are working on the development of new rapid and reliable detection methods, which include the VOCs sensor-based methods. The latter are susceptible to sensor poisoning by interfering molecules produced during high-temperature heating of fat. Analyzing the VOC profiles obtained by solid phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS) after incubation at 150 and 180 °C helps in the comprehension of the environment in which boar taint is perceived. Many similarities were observed between these temperatures; both profiles were rich in carboxylic acids and aldehydes. Through a principal component analysis (PCA) and analyses of variance (ANOVAs), differences were highlighted. Aldehydes such as (E,E)-nona-2,4-dienal exhibited higher concentrations at 150 °C, while heating at 180 °C resulted in significantly higher concentrations in fatty acids, several amide derivatives, and squalene. These differences stress the need for standardized parameters for sensory evaluation. Lastly, skatole and androstenone, the main compounds involved in boar taint, were perceived in the headspace at these temperatures but remained low (below 1 ppm). Higher temperature should be investigated to increase headspace concentrations provided that rigorous analyses of total VOC profiles are performed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...