Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604402

RESUMO

The skin microbiome can both trigger beneficial immune stimulation and pose a potential infection threat. Previous studies have shown that colonization of mouse skin with the model human skin commensal Staphylococcus epidermidis is protective against subsequent excisional wound or pathogen challenge. However, less is known about concurrent skin damage and exposure to commensal microbes, despite growing interest in interventional probiotic therapy. In this study, we address this open question by applying commensal skin bacteria at a high dose to abraded skin. Although depletion of the skin microbiome through antibiotics delayed repair from damage, probiotic-like application of commensals-including the mouse commensal Staphylococcus xylosus, 3 distinct isolates of S. epidermidis, and all other tested human skin commensals-also significantly delayed barrier repair. Increased inflammation was observed within 4 hours of S. epidermidis exposure and persisted through day 4, at which point the skin displayed a chronic wound-like inflammatory state with increased neutrophil infiltration, increased fibroblast activity, and decreased monocyte differentiation. Transcriptomic analysis suggested that the prolonged upregulation of early canonical proliferative pathways inhibited the progression of barrier repair. These results highlight the nuanced role of members of the skin microbiome in modulating barrier integrity and indicate the need for caution in their development as probiotics.

2.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106058

RESUMO

The skin microbiome can both trigger beneficial immune stimulation and pose a potential infection threat. Previous studies have shown that colonization of mouse skin with the model human skin commensal Staphylococcus epidermidis is protective against subsequent excisional wound or pathogen challenge. However, less is known about concurrent skin damage and exposure to commensal microbes, despite growing interest in interventional probiotic therapy. Here, we address this open question by applying commensal skin bacteria at a high dose to abraded skin. While depletion of the skin microbiome via antibiotics delayed repair from damage, application of commensals-- including the mouse commensal Staphylococcus xylosus, three distinct isolates of S. epidermidis, and all other tested human skin commensals-- also significantly delayed barrier repair. Increased inflammation was observed within four hours of S. epidermidis exposure and persisted through day four, at which point the skin displayed a chronic-wound-like inflammatory state with increased neutrophil infiltration, increased fibroblast activity, and decreased monocyte differentiation. Transcriptomic analysis suggested that the prolonged upregulation of early canonical proliferative pathways inhibited the progression of barrier repair. These results highlight the nuanced role of members of the skin microbiome in modulating barrier integrity and indicate the need for caution in their development as probiotics.

3.
mSphere ; 6(1)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472981

RESUMO

The mammalian gut microbiota is a complex community of microorganisms which typically exhibits remarkable stability. As the gut microbiota has been shown to affect many aspects of host health, the molecular keys to developing and maintaining a "healthy" gut microbiota are highly sought after. Yet, the qualities that define a microbiota as healthy remain elusive. We used the ability to resist change in response to antibiotic disruption, a quality we refer to as ecological resistance, as a metric for the health of the bacterial microbiota. Using a mouse model, we found that colonization with the commensal fungus Candida albicans decreased the ecological resistance of the bacterial microbiota in response to the antibiotic clindamycin such that increased microbiota disruption was observed in C. albicans-colonized mice compared to that in uncolonized mice. C. albicans colonization resulted in decreased alpha diversity and small changes in abundance of bacterial genera prior to clindamycin challenge. Strikingly, co-occurrence network analysis demonstrated that C. albicans colonization resulted in sweeping changes to the co-occurrence network structure, including decreased modularity and centrality and increased density. Thus, C. albicans colonization resulted in changes to the bacterial microbiota community and reduced its ecological resistance.IMPORTANCECandida albicans is the most common fungal member of the human gut microbiota, yet its ability to interact with and affect the bacterial gut microbiota is largely uncharacterized. Previous reports showed limited changes in microbiota composition as defined by bacterial species abundance as a consequence of C. albicans colonization. We also observed only a few bacterial genera that were significantly altered in abundance in C. albicans-colonized mice; however, C. albicans colonization significantly changed the structure of the bacterial microbiota co-occurrence network. Additionally, C. albicans colonization changed the response of the bacterial microbiota ecosystem to a clinically relevant perturbation, challenge with the antibiotic clindamycin.


Assuntos
Antibacterianos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Clindamicina/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Animais , Candida albicans/genética , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Ceco/microbiologia , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Variação Genética , Camundongos , Camundongos Endogâmicos C57BL
4.
Psychoneuroendocrinology ; 121: 104808, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739746

RESUMO

Anxiety disorders are the most prevalent mental health disorder worldwide, with a lifetime prevalence of 5-7 % of the human population. Although the etiology of anxiety disorders is incompletely understood, one aspect of host health that affects anxiety disorders is the gut-brain axis. Adolescence is a key developmental window in which stress and anxiety disorders are a major health concern. We used adolescent female mice in a gastrointestinal (GI) colonization model to demonstrate that the commensal fungus Candida albicans affects host health via the gut-brain axis. In mice, bacterial members of the gut microbiota can influence the host gut-brain axis, affecting anxiety-like behavior and the hypothalamus-pituitary-adrenal (HPA) axis which produces the stress hormone corticosterone (CORT). Here we showed that mice colonized with C. albicans demonstrated increased anxiety-like behavior and increased basal production of CORT as well as dysregulation of CORT production following acute stress. The HPA axis and anxiety-like behavior are negatively regulated by the endocannabinoid N-arachidonoylethanolamide (AEA). We demonstrated that C. albicans-colonized mice exhibited changes in the endocannabinoidome. Further, increasing AEA levels using the well-characterized fatty acid amide hydrolase (FAAH) inhibitor URB597 was sufficient to reverse both neuroendocrine phenotypes in C. albicans-colonized mice. Thus, a commensal fungus that is a common colonizer of humans had widespread effects on the physiology of its host. To our knowledge, this is the first report of microbial manipulation of the endocannabinoid (eCB) system that resulted in neuroendocrine changes contributing to anxiety-like behavior.


Assuntos
Candida albicans/patogenicidade , Endocanabinoides/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Ansiedade/metabolismo , Ansiedade/microbiologia , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/microbiologia , Ácidos Araquidônicos/metabolismo , Encéfalo/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Corticosterona/análise , Corticosterona/sangue , Endocanabinoides/farmacologia , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Sistemas Neurossecretores/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiologia , Alcamidas Poli-Insaturadas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/metabolismo , Estresse Psicológico/microbiologia
5.
J Fungi (Basel) ; 6(3)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635220

RESUMO

Prior antibiotic treatment is a risk factor for Clostridioides difficile infection (CDI); the commensal gut microbiota plays a key role in determining host susceptibility to the disease. Previous studies demonstrate that the pre-colonization of mice with a commensal fungus, Candida albicans, protects against a lethal challenge with C. difficile spores. The results reported here demonstrate that the cecum contents of antibiotic-treated mice with C. albicans colonization contained different levels of several lipid species, including non-esterified, unsaturated long-chain fatty acids compared to non-C. albicans-colonized mice. Mice fed olive oil for one week and challenged with C. difficile spores showed enhanced survival compared to PBS-fed mice. The amount of olive oil administered was not sufficient to cause weight gain or to result in significant changes to the bacterial microbiota, in contrast to the effects of a high-fat diet. Furthermore, the direct exposure of C. difficile bacteria in laboratory culture to the unsaturated fatty acid oleic acid, the major fatty acid found in olive oil, reduced the transcription of genes encoding the toxins and reduced the survival of bacteria in the post-exponential phase. Therefore, the effects of C. albicans on the metabolite milieu contributed to the attenuation of C. difficile virulence.

6.
PLoS Pathog ; 15(12): e1007823, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31809527

RESUMO

Inside the human host, the pathogenic yeast Candida albicans colonizes predominantly oxygen-poor niches such as the gastrointestinal and vaginal tracts, but also oxygen-rich environments such as cutaneous epithelial cells and oral mucosa. This suppleness requires an effective mechanism to reversibly reprogram the primary metabolism in response to oxygen variation. Here, we have uncovered that Snf5, a subunit of SWI/SNF chromatin remodeling complex, is a major transcriptional regulator that links oxygen status to the metabolic capacity of C. albicans. Snf5 and other subunits of SWI/SNF complex were required to activate genes of carbon utilization and other carbohydrates related process specifically under hypoxia. snf5 mutant exhibited an altered metabolome reflecting that SWI/SNF plays an essential role in maintaining metabolic homeostasis and carbon flux in C. albicans under hypoxia. Snf5 was necessary to activate the transcriptional program linked to both commensal and invasive growth. Accordingly, snf5 was unable to maintain its growth in the stomach, the cecum and the colon of mice. snf5 was also avirulent as it was unable to invade Galleria larvae or to cause damage to human enterocytes and murine macrophages. Among candidates of signaling pathways in which Snf5 might operate, phenotypic analysis revealed that mutants of Ras1-cAMP-PKA pathway, as well as mutants of Yak1 and Yck2 kinases exhibited a similar carbon flexibility phenotype as did snf5 under hypoxia. Genetic interaction analysis indicated that the adenylate cyclase Cyr1, a key component of the Ras1-cAMP pathway interacted genetically with Snf5. Our study yielded new insight into the oxygen-sensitive regulatory circuit that control metabolic flexibility, stress, commensalism and virulence in C. albicans.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Regulação Fúngica da Expressão Gênica/fisiologia , Virulência/fisiologia , Animais , Candida albicans/genética , Proteínas Fúngicas/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Fatores de Transcrição/metabolismo
7.
ACS Synth Biol ; 8(2): 434-444, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30608638

RESUMO

Due to a limited set of antifungals available and problems in early diagnosis, invasive fungal infections caused by Candida species are among the most common hospital-acquired infections with staggering mortality rates. Here, we describe an engineered system able to sense and respond to the fungal pathogen Candida albicans, the most common cause of candidemia. In doing so, we identified hydroxyphenylacetic acid (HPA) as a novel molecule secreted by C. albicans. Furthermore, we engineered E. coli to be able to sense HPA produced by C. albicans. Finally, we constructed a sense-and-respond system by coupling the C. albicans sensor to the production of an inhibitor of hypha formation, thereby reducing filamentation, virulence factor expression, and fungal-induced epithelial damage. This system could be used as a basis for the development of novel prophylactic approaches to prevent fungal infections.


Assuntos
Candida albicans/metabolismo , Fatores de Virulência/metabolismo , Bioengenharia/métodos , Candida albicans/genética , Probióticos , Fatores de Virulência/genética
8.
Gut Microbes ; 9(6): 497-509, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29667487

RESUMO

Clostridium difficile is a major nosocomial pathogen responsible for close to half a million infections and 27,000 deaths annually in the U.S. Preceding antibiotic treatment is a major risk factor for C. difficile infection (CDI) leading to recognition that commensal microbes play a key role in resistance to CDI. Current antibiotic treatment of CDI is only partially successful due to a high rate of relapse. As a result, there is interest in understanding the effects of microbes on CDI susceptibility to support treatment of patients with probiotic microbes or entire microbial communities (e.g., fecal microbiota transplantation). The results reported here demonstrate that colonization with the human commensal fungus Candida albicans protects against lethal CDI in a murine model. Colonization with C. albicans did not increase the colonization resistance of the host. Rather, our findings showed that one effect of C. albicans colonization was to enhance a protective immune response. Mice pre-colonized with C. albicans expressed higher levels of IL-17A in infected tissue following C. difficile challenge compared to mice that were not colonized with C. albicans. Administration of cytokine IL-17A was demonstrated to be protective against lethal murine CDI in mice not colonized with C. albicans. C. albicans colonization was associated with changes in the abundance of some bacterial components of the gut microbiota. Therefore, C. albicans colonization altered the gut ecosystem, enhancing survival after C. difficile challenge. These findings demonstrate a new, beneficial role for C. albicans gut colonization.


Assuntos
Candida albicans/imunologia , Clostridioides difficile/fisiologia , Infecções por Clostridium , Suscetibilidade a Doenças/microbiologia , Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Interações Microbianas/fisiologia , Animais , Ceco/imunologia , Ceco/microbiologia , Ceco/patologia , Clostridioides difficile/imunologia , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Interleucina-17/genética , Camundongos Endogâmicos C57BL , Interações Microbianas/imunologia , Análise de Sobrevida , Regulação para Cima/genética
9.
J Bacteriol ; 197(6): 1065-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561715

RESUMO

Bacterial strain variation exists in natural populations of bacteria and can be generated experimentally through directed or random mutation. The advent of rapid and cost-efficient whole-genome sequencing has facilitated strain-level genotyping. Even with modern tools, however, it often remains a challenge to map specific traits to individual genetic loci, especially for traits that cannot be selected under culture conditions (e.g., colonization level or pathogenicity). Using a combination of classical and modern approaches, we analyzed strain-level variation in Vibrio fischeri and identified the basis by which some strains lack the ability to utilize glycerol as a carbon source. We proceeded to reconstruct the lineage of the commonly used V. fischeri laboratory strains. Compared to the wild-type ES114 strain, we identify in ES114-L a 9.9-kb deletion with endpoints in tadB2 and glpF; restoration of the missing portion of glpF restores the wild-type phenotype. The widely used strains ESR1, JRM100, and JRM200 contain the same deletion, and ES114-L is likely a previously unrecognized intermediate strain in the construction of many ES114 derivatives. ES114-L does not exhibit a defect in competitive squid colonization but ESR1 does, demonstrating that glycerol utilization is not required for early squid colonization. Our genetic mapping approach capitalizes on the recently discovered chitin-based transformation pathway, which is conserved in the Vibrionaceae; therefore, the specific approach used is likely to be useful for mapping genetic traits in other Vibrio species.


Assuntos
Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Regulação Bacteriana da Expressão Gênica/fisiologia , Transativadores/metabolismo , Aliivibrio fischeri/classificação , Aliivibrio fischeri/genética , Animais , Proteínas de Bactérias/genética , Portador Sadio , Cromossomos Bacterianos/genética , DNA Bacteriano , Decapodiformes/microbiologia , Marcadores Genéticos , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...