Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Micromachines (Basel) ; 11(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244321

RESUMO

Contemporary regenerative therapies have introduced stem-like cells to replace damaged neurons in the visual system by recapitulating critical processes of eye development. The collective migration of neural stem cells is fundamental to retinogenesis and has been exceptionally well-studied using the fruit fly model of Drosophila Melanogaster. However, the migratory behavior of its retinal neuroblasts (RNBs) has been surprisingly understudied, despite being critical to retinal development in this invertebrate model. The current project developed a new microfluidic system to examine the collective migration of RNBs extracted from the developing visual system of Drosophila as a model for the collective motile processes of replacement neural stem cells. The system scales with the microstructure of the Drosophila optic stalk, which is a pre-cursor to the optic nerve, to produce signaling fields spatially comparable to in vivo RNB stimuli. Experiments used the micro-optic stalk system, or µOS, to demonstrate the preferred sizing and directional migration of collective, motile RNB groups in response to changes in exogenous concentrations of fibroblast growth factor (FGF), which is a key factor in development. Our data highlight the importance of cell-to-cell contacts in enabling cell cohesion during collective RNB migration and point to the unexplored synergy of invertebrate cell study and microfluidic platforms to advance regenerative strategies.

3.
PLoS One ; 14(12): e0226250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31835272

RESUMO

Collective behaviors of retinal progenitor cells (RPCs) are critical to the development of neural networks needed for vision. Signaling cues and pathways governing retinal cell fate, migration, and functional organization are remarkably conserved across species, and have been well-studied using Drosophila melanogaster. However, the collective migration of heterogeneous groups of RPCs in response to dynamic signaling fields of development remains incompletely understood. This is in large part because the genetic advances of seminal invertebrate models have been poorly complemented by in vitro cell study of its visual development. Tunable microfluidic assays able to replicate the miniature cellular microenvironments of the developing visual system provide newfound opportunities to probe and expand our knowledge of collective chemotactic responses essential to visual development. Our project used a controlled, microfluidic assay to produce dynamic signaling fields of Fibroblast Growth Factor (FGF) that stimulated the chemotactic migration of primary RPCs extracted from Drosophila. Results illustrated collective RPC chemotaxis dependent on average size of clustered cells, in contrast to the non-directional movement of individually-motile RPCs. Quantitative study of these diverse collective responses will advance our understanding of retina developmental processes, and aid study/treatment of inherited eye disease. Lastly, our unique coupling of defined invertebrate models with tunable microfluidic assays provides advantages for future quantitative and mechanistic study of varied RPC migratory responses.


Assuntos
Movimento Celular , Microambiente Celular , Drosophila melanogaster/crescimento & desenvolvimento , Neurônios/citologia , Retina/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Quimiotaxia , Drosophila melanogaster/fisiologia , Microfluídica , Neurônios/fisiologia , Retina/fisiologia , Transdução de Sinais , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...