Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1362955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572445

RESUMO

Introduction: Mitochondrial dysfunction may be one of the causes of inflammatory activation of monocytes and macrophages, which leads to excessive secretion of inflammatory mediators and the development of chronic inflammation. Aims: The study was aimed to evaluate the secretion of inflammatory cytokine tumor necrosis factor-α (TNF-α) in the primary culture of monocytes, and to analyze its relationship with the number of mitochondrial DNA (mtDNA) copies in the blood of patients with coronary heart disease (CHD) and obesity. Materials and methods: 108 patients with obesity and concomitant CHD and a control group of 25 participants were included in the study. CD14+ monocytes were isolated by a standard method in a ficoll-urographin gradient, followed by separation using magnetic particles. The number of mtDNA copies was estimated using qPCR. Results: It was demonstrated that the number of mtDNA copies was significantly increased in groups of patients with CHD and obesity + CHD in comparison with control group. mtDNA copy number positively correlated with basal and LPS-stimulated TNF-α secretion, the most significant correlation was found in the group of patients with CHD and obesity. Conclusion: Thus, the change in mtDNA copy number in CD14+ monocytes which indicates the presence of mitochondrial dysfunction, confirm the direct involvement of mitochondria in the violation of the inflammatory response of monocytes revealed in this study as an increased secretion of inflammatory cytokine TNF-α.

2.
Front Biosci (Schol Ed) ; 16(1): 6, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38538346

RESUMO

BACKGROUND: Metabolic disorders, including obesity, are often accompanied by an increased risk of cardiovascular complications. Monocytes are the common link between obesity and cardiovascular diseases (CVDs). The bias of innate cellular immunity towards pro-inflammatory activation stimulates the development of diseases associated with chronic inflammation, in particular metabolic disorders, including obesity, as well as CVDs. Disorders in the functional state of monocytes and activation of inflammation may be associated with mitochondrial dysfunction. Mutations accumulating in mitochondrial DNA with age may lead to mitochondrial dysfunction and may be considered a potential marker for developing chronic inflammatory diseases. METHODS: The present study aimed to study the relationship between mitochondrial heteroplasmy in CD14+ monocytes and cardiovascular risk factors in 22 patients with obesity and coronary heart disease (CHD) by comparing them to 22 healthy subjects. RESULTS: It was found that single-nucleotide variations (SNV) A11467G have a negative correlation with total cholesterol (r = -0.82, p < 0.05), low density lipoproteins (LDL) (r = -0.82, p < 0.05), with age (r = -0.57, p < 0.05) and with mean carotid intima-media thickness (cIMT) (r = -0.43, p < 0.05) and a positive correlation with HDL level (r = 0.71, p < 0.05). SNV 576insC positively correlated with body mass index (BMI) (r = 0.60, p < 0.001) and LDL level (r = 0.43, p < 0.05). SNV A1811G positively correlated with mean cIMT (r = 0.60, p < 0.05). CONCLUSIONS: It was revealed that some variants of mitochondrial DNA (mtDNA) heteroplasmy are associated with CVD risk factors. The results demonstrate the potential for using these molecular genetic markers to develop personalized CVD and metabolic disorder treatments.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Genoma Mitocondrial , Doenças Metabólicas , Doenças Mitocondriais , Humanos , Espessura Intima-Media Carotídea , Monócitos , Genoma Mitocondrial/genética , Doença das Coronárias/genética , Obesidade/complicações , Obesidade/genética , Fatores de Risco , Inflamação , Biomarcadores , Mutação/genética , DNA Mitocondrial/genética
3.
Biomedicines ; 12(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398066

RESUMO

Myocardial edema is the excess accumulation of fluid in the myocardial interstitium or cardiac cells that develops due to changes in capillary permeability, loss of glycocalyx charge, imbalance in lymphatic drainage, or a combination of these factors. Today it is believed that this condition is not only a complication of cardiovascular diseases, but in itself causes aggravation of the disease and increases the risks of adverse outcomes. The study of molecular, genetic, and mechanical changes in the myocardium during edema may contribute to the development of new approaches to the diagnosis and treatment of this condition. This review was conducted to describe the main mechanisms of myocardial edema development at the molecular and cellular levels and to identify promising targets for the regulation of this condition based on articles cited in Pubmed up to January 2024.

4.
Cells ; 13(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38391971

RESUMO

Mechanical properties of living cells play a crucial role in a wide range of biological functions and pathologies, including atherosclerosis. We used low-stress Scanning Ion-Conductance Microscopy (SICM) correlated with confocal imaging and demonstrated the topographical changes and mechanical properties alterations in EA.hy926 and THP-1 exposed to LDL extracted from CVD patients' blood samples. We show that the cells stiffened in the presence of LDL, which also triggered caveolae formation. Endothelial cells accumulated less cholesterol in the form of lipid droplets in comparison to THP-1 cells based on fluorescence intensity data and biochemical analysis; however, the effect on Young's modulus is higher. The cell stiffness is closely connected to the distribution of lipid droplets along the z-axis. In conclusion, we show that the sensitivity of endothelial cells to LDL is higher compared to that of THP-1, triggering changes in the cytoskeleton and membrane stiffness which may result in the increased permeability of the intima layer due to loss of intercellular connections and adhesion.


Assuntos
Células Endoteliais , Microscopia , Humanos , Células Endoteliais/metabolismo , Citoesqueleto/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo
5.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958752

RESUMO

Osteoporosis is a widespread systemic disease characterized by a decrease in bone mass and an imbalance of the microarchitecture of bone tissue. Experimental and clinical studies devoted to investigating the main pathogenetic mechanisms of osteoporosis revealed the important role of estrogen deficiency, inflammation, oxidative stress, cellular senescence, and epigenetic factors in the development of bone resorption due to osteoclastogenesis, and decreased mineralization of bone tissue and bone formation due to reduced function of osteoblasts caused by apoptosis and age-depended differentiation of osteoblast precursors into adipocytes. The current review was conducted to describe the basic mechanisms of the development of osteoporosis at molecular and cellular levels and to elucidate the most promising therapeutic strategies of pathogenetic therapy of osteoporosis based on articles cited in PubMed up to September 2023.


Assuntos
Osteogênese , Osteoporose , Humanos , Osteogênese/genética , Osteoblastos , Osteoporose/genética , Osteoporose/tratamento farmacológico , Osso e Ossos , Osteoclastos , Diferenciação Celular
6.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373454

RESUMO

Cardiovascular diseases (CVD) and, in particular, atherosclerosis, remain the main cause of death in the world today. Unfortunately, in most cases, CVD therapy begins after the onset of clinical symptoms and is aimed at eliminating them. In this regard, early pathogenetic therapy for CVD remains an urgent problem in modern science and healthcare. Cell therapy, aimed at eliminating tissue damage underlying the pathogenesis of some pathologies, including CVD, by replacing it with various cells, is of the greatest interest. Currently, cell therapy is the most actively developed and potentially the most effective treatment strategy for CVD associated with atherosclerosis. However, this type of therapy has some limitations. In this review, we have tried to summarize the main targets of cell therapy for CVD and atherosclerosis in particular based on the analysis using the PubMed and Scopus databases up to May 2023.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/etiologia , Aterosclerose/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Fatores de Risco
7.
J Clin Med ; 12(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240684

RESUMO

It is known that vasa vasorum contributes substantially to the blood supply and nutrition of one-third of the wall of the ascending thoracic aorta. Therefore, we focused on studying the relationship between inflammatory cells and vasa vasorum vessels in patients with aortic aneurysm. The material for the study was biopsies of thoracic aortic aneurysms taken from patients during an aneurysmectomy (34 men, 14 women, aged 33 to 79 years). The biopsies belonged to patients with non-hereditary thoracic aortic aneurysm. An immunohistochemical study was carried out using antibodies to antigens of T cells (CD3, CD4, CD8); macrophages (CD68); B cells (CD20); endothelium (CD31, CD34, von Willebrand factor (vWF)); and smooth muscle cells (alpha actin). Samples without inflammatory infiltrates contained less vasa vasorum in the tunica adventitia than samples with inflammatory infiltrates, and this difference was statistically significant p < 0.05. T cell infiltrates in the adventitia of aortic aneurysms were found in 28 of 48 patients. In the vessels of the vasa vasorum, surrounded by inflammatory infiltrates, T cells that adhered to the endothelium were found. The same cells were also localized in the subendothelial area. The number of adherent T cells in patients with inflammatory infiltrates in the aortic wall dominated the number of these cells in patients without inflammation of the aortic wall. This difference was statistically significant, p < 0.0006. Hypertrophy and sclerosis of the arteries of the vasa vasorum system, the narrowing of their lumen, and, as a result, impaired blood supply to the aortic wall, were found in 34 patients with hypertension. In 18 patients (both in patients with hypertension and in patients without hypertension), T cells that adhered to the vasa vasorum endothelium were found. In nine cases, massive infiltrates of T cells and macrophages were found, which surrounded and squeezed the vasa vasorum, preventing blood circulation. In six patients, parietal and obturating blood clots were found in the vasa vasorum vessels, which disrupted the normal blood supply to the aortic wall. We believe that this indicates the importance of the state of the vessels of the vasa vasorum in the development of an aortic aneurysm. In addition, pathological changes in these vessels may not always play a primary role, but always a very important role, in the pathogenesis of this disease.

8.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047399

RESUMO

Atherosclerosis is the most common cardiovascular disease and is the number one cause of death worldwide. Today, atherosclerosis is a multifactorial chronic inflammatory disease with an autoimmune component, accompanied by the accumulation of cholesterol in the vessel wall and the formation of atherosclerotic plaques, endothelial dysfunction, and chronic inflammation. In the process of accumulation of atherogenic lipids, cells of the immune system, such as monocytes, macrophages, dendritic cells, etc., play an important role, producing and/or activating the production of various cytokines-interferons, interleukins, chemokines. In this review, we have tried to summarize the most important cytokines involved in the processes of atherogenesis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Citocinas , Aterosclerose/etiologia , Placa Aterosclerótica/complicações , Macrófagos , Colesterol , Inflamação
9.
Biomedicines ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831136

RESUMO

Pericytes are perivascular multipotent cells wrapping microvascular capillaries, where they support vasculature functioning, participate in tissue regeneration, and regulate blood flow. However, recent evidence suggests that in addition to traditionally credited structural function, pericytes also manifest immune properties. In this review, we summarise recent data regarding pericytes' response to different pro-inflammatory stimuli and their involvement in innate immune responses through expression of pattern-recognition receptors. Moreover, pericytes express various adhesion molecules, thus regulating trafficking of immune cells across vessel walls. Additionally, the role of pericytes in modulation of adaptive immunity is discussed. Finally, recent reports have suggested that the interaction with cancer cells evokes immunosuppression function in pericytes, thus facilitating immune evasion and facilitating cancer proliferation and metastasis. However, such complex and multi-faceted cross-talks of pericytes with immune cells also suggest a number of potential pericyte-based therapeutic methods and techniques for cancer immunotherapy and treatment of autoimmune and auto-inflammatory disorders.

10.
Cells ; 12(4)2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36831189

RESUMO

A wide variety of cell populations, including both immune and endothelial cells, participate in the pathogenesis of atherosclerosis. Among these groups, macrophages deserve special attention because different populations of them can have completely different effects on atherogenesis and inflammation in atherosclerosis. In the current review, the significance of different phenotypes of macrophages in the progression or regression of atherosclerosis will be considered, including their ability to become the foam cells and the consequences of this event, as well as their ability to create a pro-inflammatory or anti-inflammatory medium at the site of atherosclerotic lesions as a result of cytokine production. In addition, several therapeutic strategies directed to the modulation of macrophage activity, which can serve as useful ideas for future drug developments, will be considered.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patologia , Células Endoteliais/patologia , Aterosclerose/genética , Macrófagos/patologia , Células Espumosas
11.
Front Biosci (Schol Ed) ; 15(4): 17, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38163956

RESUMO

BACKGROUND: Mitochondrial dysfunction is considered an important mechanism in the pathogenesis of various diseases. Therefore, mitochondria are currently being considered as subjects for targeted therapies, particularly, phototherapy using 5-aminolevulinic acid. This study aimed to investigate the activity of mitochondria in cells with different mutation loads. MATERIALS AND METHODS: The study was conducted using 11 cybrid lines obtained from the THP-1 cell line (a human monocytic leukemia cell line) and platelets of patients with different mitochondrial mutations. RESULTS: Our results illustrate that 5-aminolevulinic acid was metabolized equally in all cell lines, however, there was a significant decrease in mitochondrial potential, which differed among lines. CONCLUSIONS: The results of this study can be used to develop a personalized therapeutic approach based on different mitochondrial activities.


Assuntos
Ácido Aminolevulínico , Fármacos Fotossensibilizantes , Humanos , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Mitocôndrias/metabolismo , Linhagem Celular , Células THP-1 , Linhagem Celular Tumoral
12.
Front Immunol ; 14: 1309015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173718

RESUMO

Exosomes are natural extracellular vesicles that play a key role in inter- and intracellular communication. Currently they are considered as a promising therapeutic strategy for the treatment of various diseases. In osteoimmunology, exosomes can serve as biomarkers of bone homeostasis disorders and, at the same time, promising therapeutic agents with high stability in the biological environment, low immunogenicity and good bioavailability. In this review, we attempted to examine exosomes as natural mediators of intercellular communication, playing an essential role in the interaction of the immune system and bone tissue, based on an analysis of the PubMed database up to October 2023.


Assuntos
Exossomos , Vesículas Extracelulares , Comunicação Celular , Biomarcadores , Sistema Imunitário
13.
Front Mol Biosci ; 10: 1313426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161383

RESUMO

Introduction: Systemic scleroderma (SSc) is a chronic autoimmune disease of inflammatory origin. Mitochondrial dysfunction is considered as an important mechanism in the pathogenesis of SSc. Currently mitochondrial DNA (mtDNA) copy number is used as a surrogate marker of mitochondrial dysfunction. Previous studies demonstrate that innate immune cells are important participants in inflammatory and fibrotic processes in SSc. The aim of the study was to evaluate the number of mtDNA copies in CD14+ monocytes and whole blood of patients with SSc in comparison with healthy individuals. Methods: Absolute mtDNA copy number was measured using digital PCR. It was found that the number of mtDNA copies in CD14+ monocytes was significantly higher in patients with SSc compared to control, while the number of mtDNA copies in the whole blood did not have significant differences. Results: The correlation analysis revealed an inverse association of mtDNA copy number with disease duration and the relationship between pro-inflammatory activation of CD14+ monocytes in terms of LPS-stimulated IL-6 secretion and mtDNA copy number. At the same time, basal and LPS-stimulated secretion of IL-6 by cultured CD+ monocytes were significantly higher in SSc group in comparison with control. Discussion: The study results suggest that increase of mtDNA copy number in CD14+ monocytes is a possible mechanism to maintain the reduced function of defective mitochondria in monocytes from patients with SSc associated with the development and progression of SSc.

14.
Biomed Pharmacother ; 156: 113928, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411618

RESUMO

Pericytes are mural vascular cells covering microvascular capillaries, where they contribute to the formation, maturation, maintenance, stabilisation and remodelling of vasculature. They actively interact and communicate with other cells to maintain the capillary structural integrity, vascular permeability and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. In this review, we summarise recent data regarding pericyte metabolism, trans-differentiation, angiogenesis and immunomodulation in connection with different cardiovascular pathologies. Further, we discuss an application of pericytes as a new cell therapy approach to treat coronary artery disease, congenital heart disease, atherosclerotic plaques calcification and calcific valvular heart disease in different in vivo animal models and in vitro studies. Also, we discuss different methods and pharmacological therapies for CVDs treatment with pericyte-mediated effects. Finally, we present a comprehensive overview of the role of pericytes in CVDs and as a pharmacological target for different novel drugs and techniques and highlight the potential application of pericytes to treat CVDs.


Assuntos
Doenças Cardiovasculares , Pericitos , Animais , Pericitos/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Capilares , Neovascularização Patológica/metabolismo , Diferenciação Celular
15.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232962

RESUMO

Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.


Assuntos
Aterosclerose , Placa Aterosclerótica , Aterosclerose/patologia , Aterosclerose/terapia , Colesterol , Humanos , Lipídeos , Neovascularização Patológica/patologia , Pericitos/patologia , Placa Aterosclerótica/patologia
16.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897875

RESUMO

Cardiovascular diseases associated with atherosclerosis are the major cause of death in developed countries. Early prevention and treatment of atherosclerosis are considered to be an important aspect of the therapy of cardiovascular disease. Preparations based on natural products affect the main pathogenetic steps of atherogenesis, and so represent a perspective for the long-term prevention of atherosclerosis development. Numerous experimental and clinical studies have demonstrated the multiple beneficial effects of licorice and its bioactive compounds-anti-inflammatory, anti-cytokine, antioxidant, anti-atherogenic, and anti-platelet action-which allow us to consider licorice as a promising atheroprotective agent. In this review, we summarized the current knowledge on the licorice anti-atherosclerotic mechanisms of action based on the results of experimental studies, including the results of the in vitro study demonstrating licorice effect on the ability of blood serum to reduce intracellular cholesterol accumulation in cultured macrophages, and presented the results of clinical studies confirming the ameliorating activity of licorice in regard to traditional cardiovascular risk factors as well as the direct anti-atherosclerotic effect of licorice.


Assuntos
Aterosclerose , Glycyrrhiza , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
17.
Front Cardiovasc Med ; 8: 682352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136549

RESUMO

Background and Aims: Obesity is one of the major health problems worldwide. Morbid obesity (body mass index >40 kg/m2 or over 35 with a comorbidity) is associated, apart from other diseases, with an increased risk of non-alcoholic fatty liver disease (NAFLD). Moreover, dyslipidemia is an important comorbidity that is frequently found in NAFLD patients. The aim of this study was to analyze whether serum lipids in morbidly obese patients are associated with the spectrum of NAFLD. Methods: Total serum cholesterol, LDL cholesterol, HDL cholesterol, non-HDL cholesterol, VLDL, and triglycerides were analyzed in 90 morbidly obese patients. The association of lipid profile parameters with histopathological, elastographic, and sonographic indices of NAFLD, non-alcoholic steatohepatitis (NASH), and liver fibrosis were explored. Results: The mean levels of serum total cholesterol, LDL-C, and non-HDL cholesterol in patients with positive histology for liver steatosis and NASH were significantly higher than those in patients with negative histology. None of the indices showed a strong association with NAFLD, NASH, or liver fibrosis after adjustment for potential confounders. Conclusion: A slight predictive value of lipid profile is not sufficiently enough to use solely as a non-invasive test in predicting NASH or liver fibrosis.

18.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922585

RESUMO

Cardiovascular diseases (CVDs) have been classified into several types of disease, of which atherosclerosis is the most prevalent. Atherosclerosis is characterized as an inflammatory chronic disease which is caused by the formation of lesions in the arterial wall. Subsequently, lesion progression and disruption ultimately lead to heart disease and stroke. The development of atherosclerosis is the underlying cause of approximately 50% of all deaths in westernized societies. Countless studies have aimed to improve therapeutic approaches for atherosclerosis treatment; however, it remains high on the global list of challenges toward healthy and long lives. Some patients with familial hypercholesterolemia could not get intended LDL-C goals even with high doses of traditional therapies such as statins, with many of them being unable to tolerate statins because of the harsh side effects. Furthermore, even in patients achieving target LDL-C levels, the residual risk of traditional therapies is still significant thus highlighting the necessity of ongoing research for more effective therapeutic approaches with minimal side effects. Decoy-based drug candidates represent an opportunity to inhibit regulatory pathways that promote atherosclerosis. In this review, the potential roles of decoys in the treatment of atherosclerosis were described based on the in vitro and in vivo findings.


Assuntos
Aterosclerose/tratamento farmacológico , Hipolipemiantes/administração & dosagem , Terapia de Alvo Molecular , Oligodesoxirribonucleotídeos/administração & dosagem , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Humanos
19.
Life (Basel) ; 11(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672784

RESUMO

Mitochondrial dysfunction is associated with a wide range of chronic human disorders, including atherosclerosis and diabetes mellitus. Mitochondria are dynamic organelles that undergo constant turnover in living cells. Through the processes of mitochondrial fission and fusion, a functional population of mitochondria is maintained, that responds to the energy needs of the cell. Damaged or excessive mitochondria are degraded by mitophagy, a specialized type of autophagy. These processes are orchestrated by a number of proteins and genes, and are tightly regulated. When one or several of these processes are affected, it can lead to the accumulation of dysfunctional mitochondria, deficient energy production, increased oxidative stress and cell death-features that are described in many human disorders. While severe mitochondrial dysfunction is known to cause specific and mitochondrial disorders in humans, progressing damage of the mitochondria is also observed in a wide range of other chronic diseases, including cancer and atherosclerosis, and appears to play an important role in disease development. Therefore, correction of mitochondrial dynamics can help in developing new therapies for the treatment of these conditions. In this review, we summarize the recent knowledge on the processes of mitochondrial turnover and the proteins and genes involved in it. We provide a list of known mutations that affect mitochondrial function, and discuss the emerging therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...