Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(25): 17830-42, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24798333

RESUMO

Quality control (QC) in the endoplasmic reticulum (ER) scrutinizes newly synthesized proteins and directs them either to ER export or ER-associated degradation (ERAD). Here, we demonstrate that the human δ-opioid receptor (hδOR) is subjected to ERQC in both N-glycan-dependent and -independent manners. This was shown by investigating the biosynthesis and trafficking of wild-type and non-N-glycosylated F27C variants in metabolic pulse-chase assays coupled with flow cytometry and cell surface biotinylation. Both QC mechanisms distinguished the minute one-amino acid difference between the variants, targeting a large fraction of hδOR-Cys(27) to ERAD. However, the N-glycan-independent QC was unable to compensate the N-glycan-dependent pathway, and some incompletely folded non-N-glycosylated hδOR-Cys(27) reached the cell surface in conformation incompatible with ligand binding. The turnover of receptors associating with the molecular chaperone calnexin (CNX) was significantly slower for the hδOR-Cys(27), pointing to an important role of CNX in the hδOR N-glycan-dependent QC. This was further supported by the fact that inhibiting the co-translational interaction of hδOR-Cys(27) precursors with CNX led to their ERAD. Opioid receptor pharmacological chaperones released the CNX-bound receptors to ER export and, furthermore, were able to rescue the Cys(27) variant from polyubiquitination and retrotranslocation to the cytosol whether carrying N-glycans or not. Taken together, the hδOR appears to rely primarily on the CNX-mediated N-glycan-dependent QC that has the capacity to assist in folding, whereas the N-glycan-independent mechanism constitutes an alternative, although less accurate, system for directing misfolded/incompletely folded receptors to ERAD, possibly in altered cellular conditions.


Assuntos
Calnexina/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Polissacarídeos/metabolismo , Dobramento de Proteína , Proteólise , Receptores Opioides delta/metabolismo , Células HEK293 , Humanos , Polissacarídeos/genética , Estrutura Terciária de Proteína , Receptores Opioides delta/genética , Ubiquitinação/fisiologia
2.
Traffic ; 10(1): 116-29, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19000170

RESUMO

The human delta opioid receptor (hdeltaOR) is a G-protein-coupled receptor that is mainly involved in the modulation of pain and mood. Only one nonsynonymous single nucleotide polymorphism (T80G) has been described, causing Phe27Cys substitution in the receptor N-terminus and showing association with substance dependence. In this study, we expressed the two hdeltaOR variants in a heterologous expression system with an identical genetic background. They differed greatly during early steps of biosynthesis, displaying a significant difference in the maturation efficiency (50% and 85% for the Cys27 and Phe27 variants, respectively). The Cys27 variant also showed accumulation in pre-Golgi compartments of the secretory pathway and impaired targeting to endoplasmic reticulum (ER)-associated degradation following long-term expression. In addition, the cell surface receptors of the Cys27 variant internalized constitutively. Replacement of phenylalanine with other amino acids revealed that cysteine at position 27 decreased the mature receptor/precursor ratio most extensively, suggesting a thiol-mediated retention of precursors in the ER. However, cysteine did not cause a major folding defect because pharmacological characteristics and the maturation kinetics of the variants were identical, and an opioid antagonist was able to enhance the maturation of both variants. We conclude that, instead of causing loss of function, Phe27Cys polymorphism of the hdeltaOR causes a gain-of-function phenotype, which may have implications for the regulation of receptor expression at the cell surface and possibly also for the susceptibility to pathophysiological states.


Assuntos
Polimorfismo Genético/genética , Processamento de Proteína Pós-Traducional/genética , Receptores Opioides delta/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Cisteína/genética , Cisteína/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Humanos , Cinética , Dados de Sequência Molecular , Fenilalanina/genética , Fenilalanina/metabolismo , Transporte Proteico , Receptores Opioides delta/química , Receptores Opioides delta/genética , Alinhamento de Sequência
3.
J Biol Chem ; 283(43): 29086-98, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18703511

RESUMO

A great majority of G protein-coupled receptors are modified by N-glycosylation, but the functional significance of this modification for receptor folding and intracellular transport has remained elusive. Here we studied these phenomena by mutating the two N-terminal N-glycosylation sites (Asn(18) and Asn(33)) of the human delta-opioid receptor, and expressing the mutants from the same chromosomal integration site in stably transfected inducible HEK293 cells. Both N-glycosylation sites were used, and their abolishment decreased the steady-state level of receptors at the cell surface. However, pulse-chase labeling, cell surface biotinylation, and immunofluorescence microscopy revealed that this was not because of intracellular accumulation. Instead, the non-N-glycosylated receptors were exported from the endoplasmic reticulum with enhanced kinetics. The results also revealed differences in the significance of the individual N-glycans, as the one attached to Asn(33) was found to be more important for endoplasmic reticulum retention of the receptor. The non-N-glycosylated receptors did not show gross functional impairment, but flow cytometry revealed that a fraction of them was incapable of ligand binding at the cell surface. In addition, the receptors that were devoid of N-glycans showed accelerated turnover and internalization and were targeted for lysosomal degradation. The results accentuate the importance of protein conformation-based screening before export from the endoplasmic reticulum, and demonstrate how the system is compromised when N-glycosylation is disrupted. We conclude that N-glycosylation of the delta-opioid receptor is needed to maintain the expression of fully functional and stable receptor molecules at the cell surface.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Polissacarídeos/química , Receptores Opioides delta/metabolismo , Animais , Sítios de Ligação , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Glicosilação , Humanos , Cinética , Ligantes , Modelos Biológicos
4.
J Mol Biol ; 371(3): 622-38, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17588601

RESUMO

Calcium (Ca(2+)) plays a pivotal role in both cellular signaling and protein synthesis. However, it is not well understood how calcium metabolism and synthesis of secreted and membrane-bound proteins are related. Here we demonstrate that the sarco(endo)plasmic reticulum Ca(2+) ATPase 2b (SERCA2b), which maintains high Ca(2+) concentration in the lumen of the endoplasmic reticulum, interacts specifically with the human delta opioid receptor during early steps of receptor biogenesis in human embryonic kidney 293 cells. The interaction involves newly synthesized incompletely folded receptor precursors, because the association between the delta opioid receptor and SERCA2b (i) was short-lived and took place soon after receptor translation, (ii) was not affected by misfolding of the receptor, and (iii) decreased if receptor folding was enhanced by opioid receptor pharmacological chaperone. The physical association with SERCA2b was found to be a universal feature among G protein-coupled receptors within family A and was shown to occur also between the endogenously expressed luteinizing hormone receptor and SERCA2b in rat ovaries. Importantly, active SERCA2b rather than undisturbed Ca(2+) homeostasis was found to be essential for delta opioid receptor biogenesis, as inhibition of its Ca(2+) pumping activity by thapsigargin reduced the interaction and impaired the efficiency of receptor maturation, two phenomena that were not affected by a Ca(2+) ionophore A23187. Nevertheless, inhibition of SERCA2b did not compromise the functionality of receptors that were able to mature. Thus, we propose that the association with SERCA2b is required for efficient folding and/or membrane integration of G protein-coupled receptors.


Assuntos
Retículo Endoplasmático/enzimologia , Receptores Opioides delta/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Calnexina/metabolismo , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Imunoprecipitação , Ovário/efeitos dos fármacos , Ovário/enzimologia , Gravidez , Ligação Proteica/efeitos dos fármacos , Dobramento de Proteína , Precursores de Proteínas/metabolismo , Ratos , Receptores do LH/metabolismo , Receptores Opioides delta/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Especificidade por Substrato/efeitos dos fármacos , Tapsigargina/farmacologia
5.
J Biol Chem ; 282(32): 23171-83, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17550902

RESUMO

Accumulating evidence has indicated that membrane-permeable G protein-coupled receptor ligands can enhance cell surface targeting of their cognate wild-type and mutant receptors. This pharmacological chaperoning was thought to result from ligand-mediated stabilization of immature receptors in the endoplasmic reticulum (ER). In the present study, we directly tested this hypothesis using wild-type and mutant forms of the human delta-opioid receptor as models. ER-localized receptors were isolated by expressing the receptors in HEK293 cells under tightly controlled tetracycline induction and blocking their ER export with brefeldin A. The ER-retained delta-opioid receptor precursors were able to bind [(3)H]diprenorphine with high affinity, and treatment of cells with an opioid antagonist naltrexone led to a 2-fold increase in the number of binding sites. After removing the transport block, the antagonist-mediated increase in the number of receptors was detectable at the cell surface by flow cytometry and cell surface biotinylation assay. Importantly, opioid ligands, both antagonists and agonists, were found to stabilize the ER-retained receptor precursors in an in vitro heat inactivation assay and the treatment enhanced dissociation of receptor precursors from the molecular chaperone calnexin. Thus, we conclude that pharmacological chaperones facilitate plasma membrane targeting of delta-opioid receptors by binding and stabilizing receptor precursors, thereby promoting their release from the stringent ER quality control.


Assuntos
Retículo Endoplasmático/metabolismo , Receptores Opioides/metabolismo , Sítios de Ligação , Biotinilação , Brefeldina A/química , Calnexina/química , Linhagem Celular , Membrana Celular/metabolismo , DNA/química , Humanos , Cinética , Ligantes , Chaperonas Moleculares/metabolismo , Ligação Proteica , Receptores Opioides/química , Receptores Opioides delta/química
6.
J Biol Chem ; 281(23): 15780-9, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16595649

RESUMO

Protein palmitoylation is a reversible lipid modification that plays important roles for many proteins involved in signal transduction, but relatively little is known about the regulation of this modification and the cellular location where it occurs. We demonstrate that the human delta opioid receptor is palmitoylated at two distinct cellular locations in human embryonic kidney 293 cells and undergoes dynamic regulation at one of these sites. Although palmitoylation could be readily observed for the mature receptor (Mr 55,000), [3H]palmitate incorporation into the receptor precursor (Mr 45,000) could be detected only following transport blockade with brefeldin A, nocodazole, and monensin, indicating that the modification occurs initially during or shortly after export from the endoplasmic reticulum. Blocking of palmitoylation with 2-bromopalmitate inhibited receptor cell surface expression, indicating that it is needed for efficient intracellular transport. However, cell surface biotinylation experiments showed that receptors can also be palmitoylated once they have reached the plasma membrane. At this location, palmitoylation is regulated in a receptor activation-dependent manner, as was indicated by the opioid agonist-promoted increase in the turnover of receptor-bound palmitate. This agonist-mediated effect did not require receptor-G protein coupling and occurred at the cell surface without the need for internalization or recycling. The activation-dependent modulation of receptor palmitoylation may thus contribute to the regulation of receptor function at the plasma membrane.


Assuntos
Ácido Palmítico/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Frações Subcelulares/metabolismo , Linhagem Celular , Humanos
7.
Am J Physiol Lung Cell Mol Physiol ; 288(5): L997-1001, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15626747

RESUMO

Peroxiredoxins (Prxs) are a group of thiol containing proteins that participate both in signal transduction and in the breakdown of hydrogen peroxide (H(2)O(2)) during oxidative stress. Six distinct Prxs have been characterized in human cells (Prxs I-VI). Prxs I-IV form dimers held together by disulfide bonds, Prx V forms intramolecular bond, but the mechanism of Prx VI, so-called 1-Cys Prx, is still unclear. Here we describe the regulation of all six Prxs in cultured human lung A549 and BEAS-2B cells. The cells were exposed to variable concentrations of H(2)O(2), menadione, tumor necrosis factor-alpha or transforming growth factor-beta. To evoke glutathione depletion, the cells were furthermore treated with buthionine sulfoximine. Only high concentrations (300 microM) of H(2)O(2) caused a minor increase (<28%, 4 h) in the expression of Prxs I, IV, and VI. Severe oxidant stress (250-500 microM H(2)O(2)) caused a significant increase in the proportion of the monomeric forms of Prxs I-IV; this was reversible at lower H(2)O(2) concentrations (< or =250 microM). This recovery of Prx overoxidation differed among the various Prxs; Prx I was recovered within 24 h, but recovery required 48 h for Prx III. Overall, Prxs are not significantly modulated by mild oxidant stress or cytokines, but there is variable, though reversible, overoxidation in these proteins during severe oxidant exposure.


Assuntos
Estresse Oxidativo/fisiologia , Peroxidases/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Antioxidantes/metabolismo , Divisão Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxina VI , Peroxirredoxinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...