Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Microbiome Res Rep ; 3(2): 19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846022

RESUMO

Aim: Microbiomes influence the physiology and behavior of multicellular organisms and contribute to their adaptation to changing environmental conditions. However, yeast and bacterial microbiota have usually been studied separately; therefore, the interaction between bacterial and yeast communities in the gut of Drosophila melanogaster (D. melanogaster) is often overlooked. In this study, we investigate the correlation between bacterial and yeast communities in the gut of D. melanogaster. Methods: We studied the shifts in the joint microbiome of Drosophila melanogaster, encompassing both yeasts and bacteria, during adaptation to substrate with varying salt concentrations (0%, 2%, 4%, and 7%) using plating for both yeasts and bacteria and NGS-sequencing of variable 16S rRNA gene regions for bacteria. Results: The microbiome of flies and their substrates was gradually altered at moderate NaCl concentrations (2% and 4% compared with the 0% control) and completely transformed at high salt concentrations (7%). The relative abundance of Acetobacter, potentially beneficial to D. melanogaster, decreased as NaCl concentration increased, whereas the relative abundance of the more halotolerant lactobacilli first increased, peaking at 4% NaCl, and then declined dramatically at 7%. At this salinity level, potentially pathogenic bacteria of the genera Leuconostoc and Providencia were dominant. The yeast microbiome of D. melanogaster also undergoes significant changes with an increase in salt concentration in the substrate. The total yeast abundance undergoes nonlinear changes: it is lowest at 0% salt concentration and highest at 2%-4%. At a 7% concentration, the yeast abundance in flies and their substrate is lower than at 2%-4% but significantly higher than at 0%. Conclusions: The abundance and diversity of bacteria that are potentially beneficial to the flies decreased, while the proportion of potential pathogens, Leuconostoc and Providencia, increased with an increase in salt concentration in the substrate. In samples with a relatively high abundance and/or diversity of yeasts, the corresponding indicators for bacteria were often lowered, and vice versa. This may be due to the greater halotolerance of yeasts compared to bacteria and may also indicate antagonism between these groups of microorganisms.

2.
Biochemistry (Mosc) ; 89(2): 322-340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622099

RESUMO

Various environmental morphological and behavioral factors can determine the longevity of representatives of various taxa. Long-lived species develop systems aimed at increasing organism stability, defense, and, ultimately, lifespan. Long-lived species to a different extent manifest the factors favoring longevity (gerontological success), such as body size, slow metabolism, activity of body's repair and antioxidant defense systems, resistance to toxic substances and tumorigenesis, and presence of neotenic features. In continuation of our studies of mammals, we investigated the characteristics that distinguish long-lived ectotherms (crocodiles and turtles) and compared them with those of other ectotherms (squamates and amphibians) and endotherms (birds and mammals). We also discussed mathematical indicators used to assess the predisposition to longevity in different species, including standard indicators (mortality rate, maximum lifespan, coefficient of variation of lifespan) and their derivatives. Evolutionary patterns of aging are further explained by the protective phenotypes and life history strategies. We assessed the relationship between the lifespan and various studied factors, such as body size and temperature, encephalization, protection of occupied ecological niches, presence of protective structures (for example, shells and osteoderms), and environmental temperature, and the influence of these factors on the variation of the lifespan as a statistical parameter. Our studies did not confirm the hypothesis on the metabolism level and temperature as the most decisive factors of longevity. It was found that animals protected by shells (e.g., turtles with their exceptional longevity) live longer than species that have poison or lack such protective adaptations. The improvement of defense against external threats in long-lived ectotherms is consistent with the characteristics of long-lived endotherms (for example, naked mole-rats that live in underground tunnels, or bats and birds, whose ability to fly is one of the best defense mechanisms).


Assuntos
Envelhecimento , Longevidade , Animais , Estresse Oxidativo , Antioxidantes , Mamíferos
4.
Children (Basel) ; 11(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38539314

RESUMO

PURPOSE: The circumpolar habitat stands as one of the most vulnerable environments for human activity and health. The primary study objective was to compare sleep-related factors, light exposure, social cues, and potential confounding variables among schoolchildren residing in the European Arctic region from two settlements situated below and above the Polar Circle using validated self-reported questionnaires. MATERIALS AND METHODS: We recruited 94 children aged 13-15 years (40.4% males), matched by sex and age, from public educational institutions in two circumpolar settlements located below (Kem', Republic of Karelia; 64.6 NL) and above the Polar Circle (Apatity, Murmansk Region; 67.3 NL). Participants completed several surveys, including the Pediatric Daytime Sleepiness Scale, the Insomnia Severity Index, the Adolescent Sleep Hygiene Scale, and the Munich ChronoType Questionnaire, to evaluate sleep parameters and chronotype. The χ2 test was used to test for differences between proportions. Linear regression and multiple regression models with co-factors were applied to assess the relationship between studied indicators. RESULTS: A noteworthy increase in physical activity was observed in children residing in Kem' compared to those in Apatity. Children from Apatity showed higher alcohol consumption than their counterparts from Kem'. The overall rate of excessive daytime sleepiness in the sample was 17.1%. Moderate insomnia symptoms were reported in 18.4% of adolescents living in Kem' and in 25% of respondents living in Apatity, respectively. Notably, participants from Kem' attained higher academic scores and had longer exposure to sunlight on schooldays. On the other hand, children from Apatity tended to have later bedtimes and sleep-onset times on schooldays. According to the Munich ChronoType Questionnaire data, a reliance on alarm clocks on schooldays, and a higher Sleep Stability Factor based on the Adolescent Sleep Hygiene Scale. DISCUSSION: Our study indicating that higher physical activity and longer sunlight exposure among Kem' children on schooldays are associated with earlier wake-up times during schooldays, earlier bedtime whole week, reduced dependence on alarm clocks, and higher academic achievements. The results of older schoolchildren differ from many works published previously in the USA, Argentina, and Japan, which could be explained by the season when the study was performed. Here, we observed a negative impact on school performance and sleep parameters in children living in high latitudes, namely in circumpolar regions. CONCLUSIONS: Our study points out that adolescents living above the Polar Circle tend to have sleep problems, e.g., late sleep-onset times, higher excessive daytime sleepiness, and insomnia-related symptoms, because of experiencing reduced exposure to natural light. Future research encompassing assessments across all four seasons will provide a more comprehensive understanding.

6.
Clocks Sleep ; 5(1): 98-115, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36975551

RESUMO

BACKGROUND: Activity plays a very important role in keeping bodies strong and healthy, slowing senescence, and decreasing morbidity and mortality. Drosophila models of evolution under various selective pressures can be used to examine whether increased activity and decreased sleep duration are associated with the adaptation of this nonhuman species to longer or harder lives. METHODS: For several years, descendants of wild flies were reared in a laboratory without and with selection pressure. To maintain the "salt" and "starch" strains, flies from the wild population (called "control") were reared on two adverse food substrates. The "long-lived" strain was maintained through artificial selection for late reproduction. The 24 h patterns of locomotor activity and sleep in flies from the selected and unselected strains (902 flies in total) were studied in constant darkness for at least, 5 days. RESULTS: Compared to the control flies, flies from the selected strains demonstrated enhanced locomotor activity and reduced sleep duration. The most profound increase in locomotor activity was observed in flies from the starch (short-lived) strain. Additionally, the selection changed the 24 h patterns of locomotor activity and sleep. For instance, the morning and evening peaks of locomotor activity were advanced and delayed, respectively, in flies from the long-lived strain. CONCLUSION: Flies become more active and sleep less in response to various selection pressures. These beneficial changes in trait values might be relevant to trade-offs among fitness-related traits, such as body weight, fecundity, and longevity.

7.
J Diabetes Sci Technol ; : 19322968231156572, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36824046

RESUMO

BACKGROUND: Removal of diabetes devices, including insulin pumps and continuous glucose monitoring (CGM), is a common practice due to hospital policies, interference with imaging studies, medications, and surgical interventions. Furthermore, these devices are inherently prone to malfunction, adhesive failure, and issues with insertion that can lead to a reduction in wear time. Prescription and dispensing practices provide an exact number of sensors per month without redundancy to account for the realities of daily CGM use. METHODS: A RedCap survey was completed by adult patients with type 1 or type 2 diabetes (T1D or T2D) who utilize CGM followed in the Diabetes Center at Washington University in St Louis. RESULTS: Of 384 surveys sent, 99 were completed. Participants had a mean age of 54 years, T1D 69%, female 70%, White 96%, non-Hispanic 96%, and a mean duration of diabetes mellitus (DM) 28 years. Of the cohort, 100% used CGM (80.2% Dexcom, 13.5% Freestyle Libre, 6.3% Medtronic), 61% insulin pump, and 41% Hybrid closed-loop (HCL) systems. CGM-related disruption events included device malfunction (in 85.4% of participants), insertion problems (63.5%), and falling off (61.4%). Medical care-related disruption occurred most frequently in the setting of imaging (41.7%), followed by surgery/procedures (11.7%) and hospitalization (4.4%). Adverse glycemic events attributed to CGM disruption, including hyperglycemia and hypoglycemia, occurred ≥4 times in 36.5% and 12.4% of the cohort, respectively. CONCLUSIONS: Disruption in CGM use is common. Lack of redundancy of CGM supplies contributes to care disruption and adverse glycemic events.

8.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675266

RESUMO

The damaging effect of ionizing radiation (IR) exposure results in the disturbance of the gut natural barrier, followed by the development of severe gastrointestinal injury. However, the dose and application segment are known to determine the effects of IR. In this study, we demonstrated the dose- and segment-specificity of tight junction (TJ) alteration in IR-induced gastrointestinal injury in rats. Male Wistar rats were subjected to a total-body X-ray irradiation at doses of 2 or 10 Gy. Isolated jejunum and colon segments were tested in an Ussing chamber 72 h after exposure. In the jejunum, 10-Gy IR dramatically altered transepithelial resistance, short-circuit current and permeability for sodium fluorescein. These changes were accompanied by severe disturbance of histological structure and total rearrangement of TJ content (increased content of claudin-1, -2, -3 and -4; multidirectional changes in tricellulin and occludin). In the colon of 10-Gy irradiated rats, lesions of barrier and transport functions were less pronounced, with only claudin-2 and -4 altered among TJ proteins. The 2-Gy IR did not change electrophysiological characteristics or permeability in the colon or jejunum, although slight alterations in jejunum histology were noted, emphasized with claudin-3 increase. Considering that TJ proteins are critical for maintaining epithelial barrier integrity, these findings may have implications for countermeasures in gastrointestinal acute radiation injury.


Assuntos
Lesões por Radiação , Proteínas de Junções Íntimas , Ratos , Masculino , Animais , Proteínas de Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo , Ratos Wistar , Junções Íntimas/metabolismo , Ocludina/metabolismo , Radiação Ionizante , Lesões por Radiação/metabolismo , Permeabilidade
9.
Biology (Basel) ; 13(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38248453

RESUMO

This study explores the relationship between the light features of the Arctic spring equinox and circadian rhythms, sleep and metabolic health. Residents (N = 62) provided week-long actigraphy measures, including light exposure, which were related to body mass index (BMI), leptin and cortisol. Lower wrist temperature (wT) and higher evening blue light exposure (BLE), expressed as a novel index, the nocturnal excess index (NEIbl), were the most sensitive actigraphy measures associated with BMI. A higher BMI was linked to nocturnal BLE within distinct time windows. These associations were present specifically in carriers of the MTNR1B rs10830963 G-allele. A larger wake-after-sleep onset (WASO), smaller 24 h amplitude and earlier phase of the activity rhythm were associated with higher leptin. Higher cortisol was associated with an earlier M10 onset of BLE and with our other novel index, the Daylight Deficit Index of blue light, DDIbl. We also found sex-, age- and population-dependent differences in the parametric and non-parametric indices of BLE, wT and physical activity, while there were no differences in any sleep characteristics. Overall, this study determined sensitive actigraphy markers of light exposure and wT predictive of metabolic health and showed that these markers are linked to melatonin receptor polymorphism.

10.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38203447

RESUMO

Endothelial cells in brain capillaries are crucial for the function of the blood-brain barrier (BBB), and members of the tight junction protein family of claudins are regarded to be primarily responsible for barrier properties. Thus, the analysis of bioactive substances that can affect the BBB's permeability is of great importance and may be useful for the development of new therapeutic strategies for brain pathologies. In our study, we tested the hypothesis that the application of the glucocorticoid prednisolone affects the murine blood-brain barrier in vivo. Isolated brain tissue of control and prednisolone-injected mice was examined by employing immunoblotting and confocal laser scanning immunofluorescence microscopy, and the physiological and behavioral effects were analyzed. The control tissue samples revealed the expression of barrier-forming tight junction proteins claudin-1, -3, and -5 and of the paracellular cation and water-channel-forming protein claudin-2. Prednisolone administration for 7 days at doses of 70 mg/kg caused physiological and behavioral effects and downregulated claudin-1 and -3 and the channel-forming claudin-2 without altering their localization in cerebral blood vessels. Changes in the expression of these claudins might have effects on the ionic and acid-base balance in brain tissue, suggesting the relevance of our findings for therapeutic options in disorders such as cerebral edema and psychiatric failure.


Assuntos
Claudinas , Prednisolona , Animais , Camundongos , Prednisolona/farmacologia , Claudina-2 , Claudina-1 , Células Endoteliais , Encéfalo
11.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38203449

RESUMO

Ionizing radiation (IR) causes disturbances in the functions of the gastrointestinal tract. Given the therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against IR-induced disturbances in the barrier and transport properties of the jejunum and colon of rats. Male Wistar rats were subjected to 6-day intraperitoneal injections of vehicle or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to total-body X-ray irradiation (10 Gy) or a sham irradiation. Isolated tissues were examined 72 h post-irradiation. Electrophysiological characteristics and paracellular permeability for sodium fluorescein were measured in an Ussing chamber. Histological analysis and Western blotting were also performed. In the jejunum tissue, ouabain exposure did not prevent disturbances in transepithelial resistance, paracellular permeability, histological characteristics, as well as changes in the expression of claudin-1, -3, -4, tricellulin, and caspase-3 induced by IR. However, ouabain prevented overexpression of occludin and the pore-forming claudin-2. In the colon tissue, ouabain prevented electrophysiological disturbances and claudin-2 overexpression. These observations may reveal a mechanism by which circulating ouabain maintains tight junction integrity under IR-induced intestinal dysfunction.


Assuntos
Claudina-2 , Ouabaína , Masculino , Ratos , Animais , Ouabaína/farmacologia , Ratos Wistar , ATPase Trocadora de Sódio-Potássio , Intestinos
12.
Rep Biochem Mol Biol ; 12(2): 211-219, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38317809

RESUMO

Background: Epithelial-mesenchymal transition (EMT) is an important physiologic process that determines the outcome of lung tissue healing after injury. Stimuli and molecular cascades inducing EMT lead to up-regulation of the mesenchymal-specific genes in the alveolar epithelial cells and to down-regulation of the genes coding for epithelial markers. Alveolar epithelial cell lines are commonly used as in vitro models to study processes occurring in the lung tissue. The aim of this study is to quantify and compare mRNA expression levels of epithelial and mesenchymal markers in a number of lung epithelial cell lines. Methods: Lung epithelial cell lines L2, R3/1 and RLE-6TN were cultured. Repeated mRNA isolation, reverse transcription, and quantitative PCR with primers to epithelial (E-cadherin, occludin, and ZO-2) and mesenchymal (α-SMA, collagen III, and vimentin) markers were performed. Results: First, our study revealed a higher level of epithelial transcripts in the RLE-6TN cell line compared to L2 and R3/1 cells. Secondly, we have found simultaneous mRNA expression of both epithelial (E-cadherin, occludin and ZO-2) and mesenchymal (α-SMA, collagen III and vimentin) markers in all cell lines studied. Conclusions: Our data indicate that at the transcriptional level the L2, R3/1, and RLE-6TN cell lines are at one of the intermediate stages of EMT, which opens new possibilities for the study of EMT on cell lines. Determination of the direction of changes in epithelial and mesenchymal markers will make it possible to establish the factors responsible for both EMT and reverse mesenchymal-epithelial transition.

13.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555251

RESUMO

Recently it has been reported that the tumor adjacent colon tissues of 1,2-dymethylhydrazine induced (DMH)-rats revealed a high paracellular permeability. We hypothesized that the changes might be induced by cytokines. Colorectal cancer is accompanied by an increase in tumor necrosis factor alpha (TNFα) and interleukin 10 (IL10) that exert opposite regulatory effects on barrier properties of the colon, which is characterized by morphological and functional segmental heterogeneity. The aim of this study was to analyze the level of TNFα and IL10 in the colon segments of DMH-rats and to investigate their effects on barrier properties of the proximal and distal parts of the colon in healthy rats. Enzyme immunoassay analysis showed decreased TNFα in tumors in the distal part of the colon and increased IL10 in proximal tumors and in non-tumor tissues. Four-hour intraluminal exposure of the colon of healthy rats with cytokines showed reduced colon barrier function dependent on the cytokine: TNFα decreased it mainly in the distal part of the colon, whereas IL10 decreased it only in the proximal part. Western blot analysis revealed a more pronounced influence of IL10 on tight junction (TJ) proteins expression by down-regulation of the TJ proteins claudin-1, -2 and -4, and up-regulation of occludin only in the proximal part of the colon. These data may indicate a selective role of the cytokines in regulation of the barrier properties of the colon and a prominent role of IL10 in carcinogenesis in its proximal part.


Assuntos
Neoplasias do Colo , Interleucina-10 , Fator de Necrose Tumoral alfa , Animais , Ratos , Colo/metabolismo , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Interleucina-10/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142836

RESUMO

The damaging effect of ionizing radiation (IR) on skeletal muscle Na,K-ATPase is an open field of research. Considering a therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against the IR-induced disturbances of Na,K-ATPase function in rat diaphragm muscle that co-expresses the α1 and α2 isozymes of this protein. Male Wistar rats (n = 26) were subjected to 6-day injections of vehicle (0.9% NaCl) or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to one-time total-body X-ray irradiation (10 Gy), or a sham irradiation. The isolated muscles were studied 72 h post-irradiation. IR decreased the electrogenic contribution of the α2 Na,K-ATPase without affecting its protein content, thereby causing sarcolemma depolarization. IR increased serum concentrations of ouabain, IL-6, and corticosterone, decreased lipid peroxidation, and changed cellular redox status. Chronic ouabain administration prevented IR-induced depolarization and loss of the α2 Na,K-ATPase electrogenic contribution without changing its protein content. This was accompanied with an elevation of ouabain concentration in circulation and with the lack of IR-induced suppression of lipid peroxidation. Given the crucial role of Na,K-ATPase in skeletal muscle performance, these findings may have therapeutic implications as countermeasures for IR-induced muscle pathology.


Assuntos
Ouabaína , ATPase Trocadora de Sódio-Potássio , Animais , Corticosterona/metabolismo , Diafragma/metabolismo , Interleucina-6/metabolismo , Isoenzimas/metabolismo , Ligantes , Masculino , Músculo Esquelético/metabolismo , Ouabaína/metabolismo , Ouabaína/farmacologia , Ratos , Ratos Wistar , Solução Salina , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Stem Cell Res Ther ; 13(1): 366, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902958

RESUMO

The multipotency property of mesenchymal stem cells (MSCs) has attained worldwide consideration because of their immense potential for immunomodulation and their therapeutic function in tissue regeneration. MSCs can migrate to tissue injury areas to contribute to immune modulation, secrete anti-inflammatory cytokines and hide themselves from the immune system. Certainly, various investigations have revealed anti-inflammatory, anti-aging, reconstruction, and wound healing potentials of MSCs in many in vitro and in vivo models. Moreover, current progresses in the field of MSCs biology have facilitated the progress of particular guidelines and quality control approaches, which eventually lead to clinical application of MSCs. In this literature, we provided a brief overview of immunoregulatory characteristics and immunosuppressive activities of MSCs. In addition, we discussed the enhancement, utilization, and therapeutic responses of MSCs in neural, liver, kidney, bone, heart diseases, and wound healing.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Imunomodulação , Medicina Regenerativa , Cicatrização
16.
Sci Rep ; 12(1): 9381, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672381

RESUMO

Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) are associated with an increased risk of mortality and adverse cardiovascular outcomes. ADMA can be metabolized by dimethylarginine dimethylaminohydrolases (DDAHs) and by alanine-glyoxylate aminotransferase 2 (AGXT2). Deletion of DDAH1 in mice leads to elevation of ADMA in plasma and increase in blood pressure, while overexpression of human DDAH1 is associated with a lower plasma ADMA concentration and protective cardiovascular effects. The possible role of alternative metabolism of ADMA by AGXT2 remains to be elucidated. The goal of the current study was to test the hypothesis that transgenic overexpression of AGXT2 leads to lowering of plasma levels of ADMA and protection from vascular damage in the setting of DDAH1 deficiency. We generated transgenic mice (TG) with ubiquitous overexpression of AGXT2. qPCR and Western Blot confirmed the expression of the transgene. Systemic ADMA levels were decreased by 15% in TG mice. In comparison with wild type animals plasma levels of asymmetric dimethylguanidino valeric acid (ADGV), the AGXT2 associated metabolite of ADMA, were six times higher. We crossed AGXT2 TG mice with DDAH1 knockout mice and observed that upregulation of AGXT2 lowers plasma ADMA and pulse pressure and protects the mice from endothelial dysfunction and adverse aortic remodeling. Upregulation of AGXT2 led to lowering of ADMA levels and protection from ADMA-induced vascular damage in the setting of DDAH1 deficiency. This is especially important, because all the efforts to develop pharmacological ADMA-lowering interventions by means of upregulation of DDAHs have been unsuccessful.


Assuntos
Arginina , Doenças Vasculares , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Aorta/metabolismo , Arginina/análogos & derivados , Arginina/metabolismo , Pressão Sanguínea , Camundongos , Transaminases/genética , Transaminases/metabolismo
17.
Pathophysiology ; 29(2): 281-297, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35736649

RESUMO

In spite of intensive studies of different aspects of a new coronavirus infection, many issues still remain unclear. In a screening analysis of histopathology in l200 lethal cases, authors succeeded in performing a wide spectrum of immune histochemical reactions (CD2, CD 3, CD 4, CD 5, CD 7, CD 8, CD14, CD 20, CD 31, CD 34, CD 56, CD 57, CD 68, CD 163, collagen 1,3, spike protein SARS-CoV-2, caspase-3, MLCM; ACE2 receptor, occludin, and claudin-1 and -3) and electron microscopy. The results of the histological and IHC studies of deceased people with varying degrees of severity of coronavirus infection confirmed the ability of these pathogens to cause cytoproliferative changes, primarily in epithelial and endothelial cells. Lesions of various organs are possible, while the reasons for significant differences in organotropy remain unclear. Severe respiratory failure in COVID-19 in humans is associated with a very peculiar viral pneumonia. In the pathogenesis of COVID-19, the most important role is played by lesions of the microcirculatory bed, the genesis of which requires further study, but direct viral damage is most likely. Endothelial damage can be associated with both thrombosis in vessels of various calibers, leading to characteristic complications, and the development of DIC syndrome with maximal kidney damage. Such lesions can be the basis of clinically diagnosed septic shock, while usually there are no morphological data in favor of classical sepsis caused by bacteria or fungi. A massive infiltration of the lung tissue and other organs, mainly by T lymphocytes, including those with suppressor properties, makes it necessary to conduct a differential diagnosis between the morphological manifestation of the protective cellular immune response and direct viral lesions but does not exclude the hypothesis of an immunopathological component of pathogenesis. In many of the deceased, even in the absence of clear clinical symptoms, a variety of extrapulmonary lesions were also detected. The mechanism of their development probably has a complex nature: direct lesions associated with the generalization of viral infection and vascular disorders associated with endothelial damage and having an autoimmune nature. Many aspects of the pathogenesis of coronavirus infection require further comprehensive study.

18.
Int Immunopharmacol ; 110: 108983, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35750016

RESUMO

The accumulating evidence revealed that microbiota plays a significant function in training, function, and the induction of host immunity. Once this interaction (immune system-microbiota) works correctly, it enables the production of protective responses against pathogens and keeps the regulatory pathways essential for maintaining tolerance to innocent antigens. This concept of immunity and metabolic activity redefines the realm of immunometabolism, paving the way for innovative therapeutic interventions to modulate immune cells through immune metabolic alterations. A body of evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) such as butyrate, acetate, and propionate, play a key role in immune balance. SCFAs act on many cell types to regulate various vital biological processes, including host metabolism, intestinal function, and the immune system. Such SCFAs generated by gut bacteria also impact immunity, cellular function, and immune cell fate. This is a new concept of immune metabolism, and better knowledge about how lifestyle affects intestinal immunometabolism is crucial for preventing and treating disease. In this review article, we explicitly focus on the function of SCFAs in the metabolism of immune cells, especially macrophages, neutrophils, dendritic cells (DCs), B cells, T (Th) helper cells, and cytotoxic T cells (CTLs).


Assuntos
Ácidos Graxos Voláteis , Microbiota , Butiratos , Ácidos Graxos Voláteis/metabolismo , Propionatos/metabolismo
19.
Anal Biochem ; 654: 114736, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588855

RESUMO

Leukemia often initiates following dysfunctions in hematopoietic stem cells lineages. Various types of leukemia, including acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), acute promyelocytic leukemia (APL), and human T-cell leukemia/lymphoma virus type 1 (HTLV-1) can thus call for different diagnosis and treatment options. One of the most important subjects in leukemia is the early detection of the disease for effective therapeutic purposes. In this respect, biosensors detecting the molecules of deoxyribonucleic acid (DNA) as analytes are called genosensors or DNA biosensors. Electrochemical sensors, as the most significant approach, also involve reacting of chemical solutions with sensors to generate electrical signals proportional to analyte concentrations. Biosensors can further help detect cancer cells in the early stages of the disease. Moreover, electrochemical biosensors, developed based on various nanomaterials (NMs), can increase sensitivity to the detection of leukemia-related genes, e.g., BCR/ABL as a fusion gene and promyelocytic leukemia/retinoic acid receptor alpha (PML/RARα). Therefore, the present review reflects on previous studies recruiting different NMs for leukemia detection.


Assuntos
Técnicas Biossensoriais , Leucemia Promielocítica Aguda , DNA , Células-Tronco Hematopoéticas , Humanos , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética
20.
Cell Commun Signal ; 20(1): 49, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392964

RESUMO

Abnormal vasculature is one of the most conspicuous traits of tumor tissue, largely contributing to tumor immune evasion. The deregulation mainly arises from the potentiated pro-angiogenic factors secretion and can also target immune cells' biological events, such as migration and activation. Owing to this fact, angiogenesis blockade therapy was established to fight cancer by eliminating the nutrient and oxygen supply to the malignant cells by impairing the vascular network. Given the dominant role of vascular-endothelium growth factor (VEGF) in the angiogenesis process, the well-known anti-angiogenic agents mainly depend on the targeting of its actions. However, cancer cells mainly show resistance to anti-angiogenic agents by several mechanisms, and also potentiated local invasiveness and also distant metastasis have been observed following their administration. Herein, we will focus on clinical developments of angiogenesis blockade therapy, more particular, in combination with other conventional treatments, such as immunotherapy, chemoradiotherapy, targeted therapy, and also cancer vaccines. Video abstract.


Assuntos
Inibidores da Angiogênese , Neoplasias , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...