Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1339132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357267

RESUMO

Metabolic pathway drift has been formulated as a general principle to help in the interpretation of comparative analyses between biosynthesis pathways. Indeed, such analyses often indicate substantial differences, even in widespread pathways that are sometimes believed to be conserved. Here, our purpose is to check how much this interpretation fits to empirical data gathered in the field of plant and algal biosynthesis pathways. After examining several examples representative of the diversity of lipid biosynthesis pathways, we explain why it is important to compare closely related species to gain a better understanding of this phenomenon. Furthermore, this comparative approach brings us to the question of how much biotic interactions are responsible for shaping this metabolic plasticity. We end up introducing some model systems that may be promising for further exploration of this question.

2.
Plant J ; 116(6): 1617-1632, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658798

RESUMO

In the marine environment, distance signaling based on water-borne cues occurs during interactions between macroalgae and herbivores. In the brown alga Laminaria digitata from North-Atlantic Brittany, oligoalginates elicitation or grazing was shown to induce chemical and transcriptomic regulations, as well as emission of a wide range of volatile aldehydes, but their biological roles as potential defense or warning signals in response to herbivores remain unknown. In this context, bioassays using the limpet Patella pellucida and L. digitata were carried out for determining the effects of algal transient incubation with 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE) and dodecadienal on algal consumption by grazers. Simultaneously, we have developed metabolomic and transcriptomic approaches to study algal molecular responses after treatments of L. digitata with these chemical compounds. The results indicated that, unlike the treatment of the plantlets with 4-HNE or dodecadienal, treatment with 4-HHE decreases algal consumption by herbivores at 100 ng.ml-1 . Moreover, we showed that algal metabolome was significantly modified according to the type of aldehydes, and more specifically the metabolite pathways linked to fatty acid degradation. RNAseq analysis further showed that 4-HHE at 100 ng.ml-1 can activate the regulation of genes related to oxylipin signaling pathways and specific responses, compared to oligoalginates elicitation. As kelp beds constitute complex ecosystems consisting of habitat and food source for marine herbivores, the algal perception of specific aldehydes leading to targeted molecular regulations could have an important biological role on kelps/grazers interactions.


Assuntos
Ecossistema , Kelp , Aldeídos/farmacologia , Percepção
3.
Genome Res ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468308

RESUMO

Comparative analysis of genome-scale metabolic networks (GSMNs) may yield important information on the biology, evolution, and adaptation of species. However, it is impeded by the high heterogeneity of the quality and completeness of structural and functional genome annotations, which may bias the results of such comparisons. To address this issue, we developed AuCoMe, a pipeline to automatically reconstruct homogeneous GSMNs from a heterogeneous set of annotated genomes without discarding available manual annotations. We tested AuCoMe with three data sets, one bacterial, one fungal, and one algal, and showed that it successfully reduces technical biases while capturing the metabolic specificities of each organism. Our results also point out shared and divergent metabolic traits among evolutionarily distant algae, underlining the potential of AuCoMe to accelerate the broad exploration of metabolic evolution across the tree of life.

4.
Nucleic Acids Res ; 51(16): 8864-8879, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503845

RESUMO

Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.


Assuntos
DNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Dimerização , Filogenia , DNA/genética , DNA/metabolismo , Sítios de Ligação , Receptores de Estrogênio/genética
5.
BMC Biol ; 20(1): 217, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199108

RESUMO

BACKGROUND: Nuclear receptors are transcription factors of central importance in human biology and associated diseases. Much of the knowledge related to their major functions, such as ligand and DNA binding or dimerization, derives from functional studies undertaken in classical model animals. It has become evident, however, that a deeper understanding of these molecular functions requires uncovering how these characteristics originated and diversified during evolution, by looking at more species. In particular, the comprehension of how dimerization evolved from ancestral homodimers to a more sophisticated state of heterodimers has been missing, due to a too narrow phylogenetic sampling. Here, we experimentally and phylogenetically define the evolutionary trajectory of nuclear receptor dimerization by analyzing a novel NR7 subgroup, present in various metazoan groups, including cnidarians, annelids, mollusks, sea urchins, and amphioxus, but lost in vertebrates, arthropods, and nematodes. RESULTS: We focused on NR7 of the cephalochordate amphioxus B. lanceolatum. We present a complementary set of functional, structural, and evolutionary analyses that establish that NR7 lies at a pivotal point in the evolutionary trajectory from homodimerizing to heterodimerizing nuclear receptors. The crystal structure of the NR7 ligand-binding domain suggests that the isolated domain is not capable of dimerizing with the ubiquitous dimerization partner RXR. In contrast, the full-length NR7 dimerizes with RXR in a DNA-dependent manner and acts as a constitutively active receptor. The phylogenetic and sequence analyses position NR7 at a pivotal point, just between the basal class I nuclear receptors that form monomers or homodimers on DNA and the derived class II nuclear receptors that exhibit the classical DNA-independent RXR heterodimers. CONCLUSIONS: Our data suggest that NR7 represents the "missing link" in the transition between class I and class II nuclear receptors and that the DNA independency of heterodimer formation is a feature that was acquired during evolution. Our studies define a novel paradigm of nuclear receptor dimerization that evolved from DNA-dependent to DNA-independent requirements. This new concept emphasizes the importance of DNA in the dimerization of nuclear receptors, such as the glucocorticoid receptor and other members of this pharmacologically important oxosteroid receptor subfamily. Our studies further underline the importance of studying emerging model organisms for supporting cutting-edge research.


Assuntos
Receptores de Glucocorticoides , Receptores do Ácido Retinoico , Animais , DNA , Dimerização , Humanos , Cetosteroides , Ligantes , Filogenia , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Glucocorticoides/genética , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/química , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo
6.
Curr Biol ; 32(3): R100-R105, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134351

RESUMO

The functional evolution of ancient proteins has recently been reconstructed using molecular phylogeny, and the activity of the deduced molecules can be tested. Unfortunately, the world of small molecules escapes such 'resurrection' studies, which rely on ancestral sequence reconstruction. These studies implicitly assume that only the proteins evolve, whereas the small molecules are presumed to be identical now and in the past. Recent evolutionary analysis of biochemical pathways, however, as well as the impressive surge of metabolomics are changing this situation, and it is becoming possible to reconstruct ancient biochemical pathways. We can now begin to infer the chemical structures of key molecules that were present in the past, synthesize those molecules, and test their ability to interact with their cognate (ancient) protein partners. In this essay, we discuss the possibilities offered by these new methodological developments and provide key examples. We also highlight four principles that are important to consider when studying the evolution of small molecules: catalytic promiscuity, metabolic reconfiguration, coevolution and bidirectional interactions. These new developments call for an alliance between organic chemists and evolutionary scientists to investigate the diversity of the chemical building blocks of life, and the evolution of their biosynthetic pathways.


Assuntos
Evolução Molecular , Proteínas , Filogenia , Proteínas/genética
7.
Front Plant Sci ; 12: 648426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986764

RESUMO

Sterols are biologically important molecules that serve as membrane fluidity regulators and precursors of signaling molecules, either endogenous or involved in biotic interactions. There is currently no model of their biosynthesis pathways in brown algae. Here, we benefit from the availability of genome data and gas chromatography-mass spectrometry (GC-MS) sterol profiling using a database of internal standards to build such a model. We expand the set of identified sterols in 11 species of red, brown, and green macroalgae and integrate these new data with genomic data. Our analyses suggest that some metabolic reactions may be conserved despite the loss of canonical eukaryotic enzymes, like the sterol side-chain reductase (SSR). Our findings are consistent with the principle of metabolic pathway drift through enzymatic replacement and show that cholesterol synthesis from cycloartenol may be a widespread but variable pathway among chlorophyllian eukaryotes. Among the factors contributing to this variability, one could be the recruitment of cholesterol biosynthetic intermediates to make signaling molecules, such as the mozukulins. These compounds were found in some brown algae belonging to Ectocarpales, and we here provide a first mozukulin biosynthetic model. Our results demonstrate that integrative approaches can already be used to infer experimentally testable models, which will be useful to further investigate the biological roles of those newly identified algal pathways.

8.
PLoS Genet ; 17(4): e1009492, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33882063

RESUMO

Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors.


Assuntos
Desenvolvimento Embrionário/genética , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Receptores X de Retinoides/genética , Fatores de Transcrição/ultraestrutura , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Dimerização , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Humanos , Ligantes , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores X de Retinoides/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/genética
9.
Front Genet ; 12: 811993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186015

RESUMO

Myeloblastosis (MYB) proteins represent one of the largest families of eukaryotic transcription factors and regulate important processes in growth and development. Studies on MYBs have mainly focused on animals and plants; however, comprehensive analysis across other supergroups such as SAR (stramenopiles, alveolates, and rhizarians) is lacking. This study characterized the structure, evolution, and expression of MYBs in four brown algae, which comprise the biggest multicellular lineage of SAR. Subfamily 1R-MYB comprised heterogeneous proteins, with fewer conserved motifs found outside the MYB domain. Unlike the SHAQKY subgroup of plant 1R-MYB, THAQKY comprised the largest subgroup of brown algal 1R-MYBs. Unlike the expansion of 2R-MYBs in plants, brown algae harbored more 3R-MYBs than 2R-MYBs. At least ten 2R-MYBs, fifteen 3R-MYBs, and one 6R-MYB orthologs existed in the common ancestor of brown algae. Phylogenetic analysis showed that brown algal MYBs had ancient origins and a diverged evolution. They showed strong affinity with stramenopile species, while not with red algae, green algae, or animals, suggesting that brown algal MYBs did not come from the secondary endosymbiosis of red and green plastids. Sequence comparison among all repeats of the three types of MYB subfamilies revealed that the repeat of 1R-MYBs showed higher sequence identity with the R3 of 2R-MYBs and 3R-MYBs, which supports the idea that 1R-MYB was derived from loss of the first and second repeats of the ancestor MYB. Compared with other species of SAR, brown algal MYB proteins exhibited a higher proportion of intrinsic disordered regions, which might contribute to multicellular evolution. Expression analysis showed that many MYB genes are responsive to different stress conditions and developmental stages. The evolution and expression analyses provided a comprehensive analysis of the phylogeny and functions of MYBs in brown algae.

10.
Nat Commun ; 11(1): 3454, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651383

RESUMO

Biological rhythms are a fundamental property of life. The deep ocean covers 66% of our planet surface and is one of the largest biomes. The deep sea has long been considered as an arrhythmic environment because sunlight is totally absent below 1,000 m depth. In the present study, we have sequenced the temporal transcriptomes of a deep-sea species, the ecosystem-structuring vent mussel Bathymodiolus azoricus. We reveal that tidal cycles predominate in the transcriptome and physiology of mussels fixed directly at hydrothermal vents at 1,688 m depth at the Mid-Atlantic Ridge, whereas daily cycles prevail in mussels sampled after laboratory acclimation. We identify B. azoricus canonical circadian clock genes, and show that oscillations observed in deep-sea mussels could be either a direct response to environmental stimulus, or be driven endogenously by one or more biological clocks. This work generates in situ insights into temporal organisation in a deep-sea organism.


Assuntos
Mytilidae/fisiologia , Animais , Ecossistema , Fontes Hidrotermais , Biologia Marinha , Periodicidade
11.
iScience ; 23(2): 100849, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32058961

RESUMO

Inferring genome-scale metabolic networks in emerging model organisms is challenged by incomplete biochemical knowledge and partial conservation of biochemical pathways during evolution. Therefore, specific bioinformatic tools are necessary to infer biochemical reactions and metabolic structures that can be checked experimentally. Using an integrative approach combining genomic and metabolomic data in the red algal model Chondrus crispus, we show that, even metabolic pathways considered as conserved, like sterols or mycosporine-like amino acid synthesis pathways, undergo substantial turnover. This phenomenon, here formally defined as "metabolic pathway drift," is consistent with findings from other areas of evolutionary biology, indicating that a given phenotype can be conserved even if the underlying molecular mechanisms are changing. We present a proof of concept with a methodological approach to formalize the logical reasoning necessary to infer reactions and molecular structures, abstracting molecular transformations based on previous biochemical knowledge.

12.
Mar Genomics ; 52: 100740, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31937506

RESUMO

Brown algae are multicellular photosynthetic stramenopiles that colonize marine rocky shores worldwide. Ectocarpus sp. Ec32 has been established as a genomic model for brown algae. Here we present the genome and metabolic network of the closely related species, Ectocarpus subulatus Kützing, which is characterized by high abiotic stress tolerance. Since their separation, both strains show new traces of viral sequences and the activity of large retrotransposons, which may also be related to the expansion of a family of chlorophyll-binding proteins. Further features suspected to contribute to stress tolerance include an expanded family of heat shock proteins, the reduction of genes involved in the production of halogenated defence compounds, and the presence of fewer cell wall polysaccharide-modifying enzymes. Overall, E. subulatus has mainly lost members of gene families down-regulated in low salinities, and conserved those that were up-regulated in the same condition. However, 96% of genes that differed between the two examined Ectocarpus species, as well as all genes under positive selection, were found to encode proteins of unknown function. This underlines the uniqueness of brown algal stress tolerance mechanisms as well as the significance of establishing E. subulatus as a comparative model for future functional studies.


Assuntos
Genoma/genética , Phaeophyceae/genética , Estresse Fisiológico/genética , Proteínas de Algas/genética , Redes e Vias Metabólicas/genética , Família Multigênica/genética , Vitória
13.
Antioxidants (Basel) ; 8(11)2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31744163

RESUMO

Understanding growth mechanisms in brown algae is a current scientific and economic challenge that can benefit from the modeling of their metabolic networks. The sequencing of the genomes of Saccharina japonica and Cladosiphon okamuranus has provided the necessary data for the reconstruction of Genome-Scale Metabolic Networks (GSMNs). The same in silico method deployed for the GSMN reconstruction of Ectocarpus siliculosus to investigate the metabolic capabilities of these two algae, was used. Integrating metabolic profiling data from the literature, we provided functional GSMNs composed of an average of 2230 metabolites and 3370 reactions. Based on these GSMNs and previously published work, we propose a model for the biosynthetic pathways of the main carotenoids in these two algae. We highlight, on the one hand, the reactions and enzymes that have been preserved through evolution and, on the other hand, the specificities related to brown algae. Our data further indicate that, if abscisic acid is produced by Saccharina japonica, its biosynthesis pathway seems to be different in its final steps from that described in land plants. Thus, our work illustrates the potential of GSMNs reconstructions for formalizing hypotheses that can be further tested using targeted biochemical approaches.

14.
Planta ; 249(3): 647-661, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30341489

RESUMO

MAIN CONCLUSION: Comparative genomic analysis of cytochromes P450 revealed high diversification and dynamic changes in stramenopiles, associated with transcriptional responsiveness to various environmental stimuli. Comparative genomic and molecular evolution approaches were used to characterize cytochromes P450 (P450) diversity in stramenopiles. Phylogenetic analysis pointed to a high diversity of P450 in stramenopiles and identified three major clans. The CYP51 and CYP97 clans were present in brown algae, diatoms and Nannochloropsis gaditana, whereas the CYP5014 clan mainly includes oomycetes. Gene gain and loss patterns revealed that six CYP families-CYP51, CYP97, CYP5160, CYP5021, CYP5022, and CYP5165-predated the split of brown algae and diatoms. After they diverged, diatoms gained more CYP families, especially in the cold-adapted species Fragilariopsis cylindrus, in which eight new CYP families were found. Selection analysis revealed that the expanded CYP51 family in the brown alga Cladosiphon okamuranus exhibited a more relaxed selection constraint compared with those of other brown algae and diatoms. Our RNA-seq data further evidenced that most of P450s in Saccharina japonica are highly expressed in large sporophytes, which could potentially promote the large kelp formation in this developmental stage. A survey of Ectocarpus siliculosus and diatom transcriptomes showed that many P450s are responsive to stress, nutrient limitation or light quality, suggesting pivotal roles in detoxification or metabolic processes under adverse environmental conditions. The information provided in this study will be helpful in designing functional experiments and interpreting P450 roles in this particular lineage.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Variação Genética/genética , Estramenópilas/genética , Genômica , Phaeophyceae/enzimologia , Phaeophyceae/genética , Filogenia , Alinhamento de Sequência , Estramenópilas/enzimologia , Transcriptoma
15.
J Steroid Biochem Mol Biol ; 184: 11-19, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29940311

RESUMO

Steroid hormone receptors are important regulators of development and physiology in bilaterian animals, but the role of steroid signaling in cnidarians has been contentious. Cnidarians produce steroids, including A-ring aromatic steroids with a side-chain, but these are probably made through pathways different than the one used by vertebrates to make their A-ring aromatic steroids. Here we present comparative genomic analyses indicating the presence of a previously undescribed nuclear receptor family within medusozoan cnidarians, that we propose to call NR3E. This family predates the diversification of ERR/ER/SR in bilaterians, indicating that the first NR3 evolved in the common ancestor of the placozoan and cnidarian-bilaterian with lineage-specific loss in the anthozoans, even though multiple species in this lineage have been shown to produce aromatic steroids, whose function remain unclear. We discovered serendipitously that a cytoplasmic factor within epidermal cells of transgenic Hydra vulgaris can trigger the nuclear translocation of heterologously expressed human ERα. This led us to hypothesize that aromatic steroids may also be present in the medusozoan cnidarian lineage, which includes Hydra, and may explain the translocation of human ERα. Docking experiments with paraestrol A, a cnidarian A-ring aromatic steroid, into the ligand-binding pocket of Hydra NR3E indicates that, if an aromatic steroid is indeed the true ligand, which remains to be demonstrated, it would bind to the pocket through a partially distinct mechanism from the manner in which estradiol binds to vertebrate ER.


Assuntos
Hydra/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais/fisiologia , Animais , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Receptor alfa de Estrogênio/genética , Evolução Molecular , Humanos , Ligantes , Simulação de Acoplamento Molecular
16.
Gen Comp Endocrinol ; 265: 41-45, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29908834

RESUMO

Hormonally active phytochemicals (HAPs) are signaling molecules produced by plants that alter hormonal signaling in animals, due to consumption or environmental exposure. To date, HAPs have been investigated mainly in terrestrial ecosystems. To gain a full understanding of the origin and evolution of plant-animal interactions, it is necessary also to study these interactions in the marine environment, where the major photosynthetic lineages are very distant from the terrestrial plants. Here we focus on chemicals from red and brown macroalgae and point out their potential role as modulators of the endocrine system of aquatic animals through nuclear hormone receptors. We show that, regarding steroids and oxylipins, there are already some candidates available for further functional investigations of ligand-receptor interactions. Furthermore, several carotenoids, produced by cyanobacteria provide candidates that could be investigated with respect to their presence in macroalgae. Finally, regarding halogenated compounds, it is not clear yet which molecules could bridge the gap to explain the transition from lipid sensing to thyroid hormone high affinity binding among nuclear receptors.


Assuntos
Organismos Aquáticos/metabolismo , Compostos Fitoquímicos/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Alga Marinha/química , Animais , Organismos Aquáticos/efeitos dos fármacos , Ecossistema , Ligantes , Modelos Animais , Compostos Fitoquímicos/química
17.
Cell Chem Biol ; 25(6): 787-796.e12, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29779955

RESUMO

In the nematodes Caenorhabditis elegans and Pristionchus pacificus, a modular library of small molecules control behavior, lifespan, and development. However, little is known about the final steps of their biosynthesis, in which diverse building blocks from primary metabolism are attached to glycosides of the dideoxysugar ascarylose, the ascarosides. We combine metabolomic analysis of natural isolates of P. pacificus with genome-wide association mapping to identify a putative carboxylesterase, Ppa-uar-1, that is required for attachment of a pyrimidine-derived moiety in the biosynthesis of ubas#1, a major dauer pheromone component. Comparative metabolomic analysis of wild-type and Ppa-uar-1 mutants showed that Ppa-uar-1 is required specifically for the biosynthesis of ubas#1 and related metabolites. Heterologous expression of Ppa-UAR-1 in C. elegans yielded a non-endogenous ascaroside, whose structure confirmed that Ppa-uar-1 is involved in modification of a specific position in ascarosides. Our study demonstrates the utility of natural variation-based approaches for uncovering biosynthetic pathways.


Assuntos
Genômica , Metabolômica , Nematoides/genética , Nematoides/metabolismo , Feromônios/biossíntese , Feromônios/genética , Animais , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Feromônios/química
18.
PLoS Comput Biol ; 14(5): e1006146, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29791443

RESUMO

Genome-scale metabolic models have become the tool of choice for the global analysis of microorganism metabolism, and their reconstruction has attained high standards of quality and reliability. Improvements in this area have been accompanied by the development of some major platforms and databases, and an explosion of individual bioinformatics methods. Consequently, many recent models result from "à la carte" pipelines, combining the use of platforms, individual tools and biological expertise to enhance the quality of the reconstruction. Although very useful, introducing heterogeneous tools, that hardly interact with each other, causes loss of traceability and reproducibility in the reconstruction process. This represents a real obstacle, especially when considering less studied species whose metabolic reconstruction can greatly benefit from the comparison to good quality models of related organisms. This work proposes an adaptable workspace, AuReMe, for sustainable reconstructions or improvements of genome-scale metabolic models involving personalized pipelines. At each step, relevant information related to the modifications brought to the model by a method is stored. This ensures that the process is reproducible and documented regardless of the combination of tools used. Additionally, the workspace establishes a way to browse metabolic models and their metadata through the automatic generation of ad-hoc local wikis dedicated to monitoring and facilitating the process of reconstruction. AuReMe supports exploration and semantic query based on RDF databases. We illustrate how this workspace allowed handling, in an integrated way, the metabolic reconstructions of non-model organisms such as an extremophile bacterium or eukaryote algae. Among relevant applications, the latter reconstruction led to putative evolutionary insights of a metabolic pathway.


Assuntos
Bases de Dados Factuais , Genômica , Armazenamento e Recuperação da Informação , Internet , Redes e Vias Metabólicas/genética , Antioxidantes/metabolismo , Genômica/métodos , Genômica/normas , Armazenamento e Recuperação da Informação/métodos , Armazenamento e Recuperação da Informação/normas , Microalgas/genética , Microalgas/metabolismo , Modelos Teóricos , Reprodutibilidade dos Testes
19.
Curr Top Dev Biol ; 125: 1-38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28527568

RESUMO

Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that modulate a wide variety of physiological functions in a ligand-dependent manner. The first NRs were discovered as receptors of well-known hormones such as 17ß-estradiol, corticosteroids, or thyroid hormones. In these cases a direct activation of the receptor transcriptional activity by a very specific ligand, with nanomolar affinity, was demonstrated, providing a strong conceptual framework to understand the mechanism of action of these hormones. However, the discovery that some NRs are able to bind different ligands with micromolar affinity was a first sign that the univocal relationship between a specific receptor (e.g., TR) and a specific ligand (e.g., thyroid hormone) should not be generalized to the whole family. These discussions about the nature of NR ligands have been reinforced by the study of the hormone/receptor couple evolution. Indeed when the ligand is not a protein but a small molecule derived from a biochemical pathway, a simple coevolution mechanism between the ligand and the receptor cannot operate. We and others have recently shown that the ligands acting for a given NR early on during evolution were often different from the classical mammalian ligands. This suggests that the NR/ligand evolutionary relationship is more dynamic than anticipated and that the univocal relationship between a receptor and a specific molecule may be an oversimplification. Moreover, classical NRs can have different ligands acting in a tissue-specific fashion with significant impact on their function. This also suggests that we may have to reevaluate the pharmacology of the ligand/receptor couple.


Assuntos
Evolução Molecular , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ligantes , Modelos Biológicos , Transdução de Sinais
20.
Sci Adv ; 3(3): e1601778, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28435861

RESUMO

The origin of ancient ligand/receptor couples is often analyzed via reconstruction of ancient receptors and, when ligands are products of metabolic pathways, they are not supposed to evolve. However, because metabolic pathways are inherited by descent with modification, their structure can be compared using cladistic analysis. Using this approach, we studied the evolution of steroid hormones. We show that side-chain cleavage is common to most vertebrate steroids, whereas aromatization was co-opted for estrogen synthesis from a more ancient pathway. The ancestral products of aromatic activity were aromatized steroids with a side chain, which we named "paraestrols." We synthesized paraestrol A and show that it effectively binds and activates the ancestral steroid receptor. Our study opens the way to comparative studies of biologically active small molecules.


Assuntos
Estrogênios/genética , Evolução Molecular , Modelos Genéticos , Receptores de Estrogênio/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...