Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Vet Q ; 40(1): 353-383, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33198593

RESUMO

Literally, reproductive immunology was born in bovine on-farm reproduction where seminal experiments intended for developing methods for embryo transfer in cattle were performed. Actually, these experiments led to two of major concepts and fundamental principles of reproductive immunology using the bovine species as a model for biomedical research, namely the concept of acquired immunological tolerance and the paradox of the semiallogeneic bovine foetus whereby such organism can develop within an immunologically competent host. Peter Medawar, a scientist who together with Frank Macfarlande Burnet shared the 1960 Nobel Prize in physiology or medicine for discovery of acquired immunological tolerance, while studying dizygotic cattle twins, thereby giving birth to reproductive immunology. Also, these findings significantly influenced development of organ transplants and showed that using farm animals as models for studying transplantation immunology had general relevance for mammalian biology and health including those of humans. However, the interest for further research of the fascinating maternal immune influences on pregnancy and perinatal outcomes and of the prevention and treatment of immunologically mediated reproductive disorders in viviparous mammals of veterinary relevance by veterinary immunologists and reproductive clinicians have been very scarce regarding the application of nonspecific immunomodulatory agents for prevention and treatment of subfertility and infertility in pigs and cattle, but still broadening knowledge in this area and hold great potential for improving such therapy in the future. The aim of the current overview is to provide up-to-date information and explaining/translating relevant immunology phenomena into veterinary practice for specialists and scientists/clinicians in reproduction of animals.


Assuntos
Evolução Biológica , Feto/imunologia , Células Germinativas/imunologia , Mamíferos/fisiologia , Animais , Feminino , Tolerância Imunológica/imunologia , Mamíferos/genética , Mamíferos/imunologia , Gravidez
3.
Animal ; 12(3): 559-568, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28735578

RESUMO

The aims of this study were to determine the presence and quantities of antioxidative status and oxidative stress (OS) variables in the seminal plasma and spermatozoa of bulls of varying age during cold and warm periods of the year, and to establish the correlation of these variables with semen quality parameters. The study was conducted on two groups each comprising nine Simmental bulls: one group contained younger animals (aged 2 to 4 years) and the second older animals (aged 5 to 10 years). Semen samples were collected using an artificial vagina for biochemical analysis. Seminal plasma and spermatozoa activities of total superoxide dismutase (TSOD), manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase (CAT), selenium-dependent glutathione peroxidase, reduced glutathione and concentrations of total protein (TP), thiobarbituric acid reactive substances (TBARS) and protein carbonyl content (PCC) were determined. Several antioxidants in seminal plasma were also determined: total glutathione peroxidase (TGSH-Px), selenium-independent glutathione peroxidase (Non-SeGSH-Px), uric acid, albumins (ALB) and alkaline phosphatase (ALP). Significantly higher spermatozoa motility was observed during the cold v. warm period, and a significantly higher volume and total number of spermatozoa per ejaculate was observed in older than in younger bulls. Significantly higher values of ALP, TP and ALB were found in seminal plasma of older bulls than in younger bulls during the warm period. The seminal plasma of younger bulls showed significantly higher activities of TSOD, MnSOD, CuZnSOD, TGSH-Px and Non-SeGSH-Px. Younger bulls had significantly higher PCC concentration and activity of CAT in seminal plasma than older bulls during the cold period. Significantly higher concentrations of PCC and TBARS, and activities of TSOD, MnSOD and CuZnSOD were established in spermatozoa of the younger than in older bulls during the warm period. It could be concluded that antioxidative and OS variables differ significantly depending on bull age and time of year. Younger bulls were more sensitive to elevated ambient temperatures during the warm period, when the higher enzymatic antioxidative protection in seminal plasma and spermatozoa were insufficient to counteract the intensive oxidative processes in spermatozoa, which eventually resulted in decreased spermatozoa motility. The estimation of antioxidative and OS variables in seminal plasma and spermatozoa may have practical value for the assessment of bull semen quality.


Assuntos
Antioxidantes/fisiologia , Bovinos/fisiologia , Sêmen/fisiologia , Fatores Etários , Animais , Cruzamento , Temperatura Baixa , Temperatura Alta , Masculino , Estresse Oxidativo , Carbonilação Proteica , Análise do Sêmen/veterinária , Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...