Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int ; 316: 110470, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32890902

RESUMO

Rapid, non-destructive nuclear forensic techniques can aid in signature development and provide valuable information for provenance assessments. Using optical profilometry and digital microscopy, we studied the surface roughness of fuel pellets to probe its usefulness as a forensic signature and its relationship to a given producer's grinding techniques. Arithmetic average areal (Sa) surface roughness measurements provide a rapid, non-destructive technique, producing efficient measurements with smaller standard uncertainties relative to 2D, arithmetic average profile (Ra) surface roughness measurements. Digital microscopy proved to be the superior technique over optical profilometry, in part due to its higher image quality, faster data acquisition capabilities, and multi-purpose potential in physical surface characterization. Using digital microscopy, fuel pellet Sa surface roughness varies in commercial reactor fuel pellets from 1.54±0.17µm to 2.11±0.12µm and does not appear to depend solely on the use of wet versus dry grinding techniques. Populations of pellets produced at three different commercial reactor fuel production facilities were distinguishable on the basis of Sa. Complementary to other key forensic characteristics, such as dimensions and enrichment, Sa measurements provide a promising nuclear forensic signature for sintered UO2 fuel pellets.

2.
Nature ; 505(7482): 204-7, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24291793

RESUMO

Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks--in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas--provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...