Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbon Balance Manag ; 14(1): 16, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31797110

RESUMO

BACKGROUND: Although there is broad agreement that negative carbon emissions may be required in order to meet the global climate change targets specified in the Paris Agreement and that carbon sequestration in the terrestrial biosphere can be an important contributor, there are important accounting issues that often discourage forest carbon sequestration projects. The legislation establishing the California forest offset program, for example, requires that offsets be "real, additional, quantifiable, permanent, verifiable, and enforceable". While these are all clearly desirable attributes, their implementation has been a great challenge in balancing complexity, expense, and risk. Most forest offset protocols carry similar accounting objectives, but often with different details, (e.g. Richards and Huebner in Carbon Manag 3(4):393-410, 2012 and Galik et al. in Mitig Adapt Strateg Glob Change 14:677-690, 2009). The result is that the complexity, expense, and risk of participation discourage participation and make it more difficult to achieve climate mitigation goals. We focus on the requirements for accounting and permanence to illustrate that current requirements disproportionately disadvantage small landowners. RESULTS: The simplified 1040EZ filing system for U.S. income taxes may provide insight for a protocol model that balances reward, effort, and risk, while still achieving the overall objectives of standardized offset protocols. In this paper, we present initial ideas and lay the groundwork behind a "2050EZ" protocol for forest carbon sequestration as a complement to existing protocols. CONCLUSION: The Paris Agreement states that "Parties should take action to conserve and enhance, as appropriate, sinks and reservoirs of greenhouse gases." The Paris Agreement also refers to issues such as equity, sustainable development, and other non-carbon benefits. The challenge is to provide incentives for maintaining and increasing the amount of carbon sequestered in the biosphere. Monitoring and verification of carbon storage need to be sufficient to demonstrate sequestration from the atmosphere while providing clear incentives and simple accounting approaches that encourage participation by diverse participants, including small land holders.

2.
J Air Waste Manag Assoc ; 69(5): 646-658, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735479

RESUMO

Carbon dioxide (CO2) emissions from U.S. power plants are independently reported by the U.S. Energy Information Administration (EIA) and the Clean Air Markets Division (CAMD) within the U.S. Environmental Protection Agency (EPA). Differences between the CAMD and EIA emission tallies show that the amount of CO2 produced by an individual power plant is less certain than might be imagined or desired. These differences are attributed to systematic error and random measurement error. Random error cannot be retroactively corrected, whereas systematic error can be corrected where relevant data are available. Accordingly, this study identified and, where possible, corrected systematic error affecting the CAMD and EIA CO2 emission tallies for 1065 power plants that emitted more than 25,000 tons of CO2 during 2013. The EIA tallies were corrected by accounting for emission factor error, acid-gas sorbent consumption, and combustion of biogenic fuel. The CAMD tallies were likewise corrected by accounting for unreported unit emissions. It was not possible to objectively correct systematic error affecting about 11% of the power plants, and subjective corrections were not attempted. At these plants, the CAMD and EIA emission tallies sometimes differed by more than 20% due to missing unit error, plant identification error, temporal measurement error, or inferred reporting error. Comparisons of the CAMD and EIA emission tallies before and after correction for systematic error show the effectiveness of these corrections. The comparisons also show the persistence of random measurement error. Implications: Understanding the uncertainty of CO2 emission tallies for USA power plants might inform emission inventories, atmospheric flow models or inversions, and emission reduction policies. Knowing the cause and size of measurement errors that contribute to this uncertainty might also help to identify ways to improve the measurement methods and reporting protocols that these CO2 emission tallies are based on.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Centrais Elétricas , Incerteza , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...