Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 171(1): 3-24, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27002060

RESUMO

Metatranscriptomic study of nonmodel organisms requires strategies that retain the highly resolved genetic information generated from model organisms while allowing for identification of the unexpected. A real-world biological application of phytoremediation, the field growth of 10 Salix cultivars on polluted soils, was used as an exemplar nonmodel and multifaceted crop response well-disposed to the study of gene expression. Sequence reads were assembled de novo to create 10 independent transcriptomes, a global transcriptome, and were mapped against the Salix purpurea 94006 reference genome. Annotation of assembled contigs was performed without a priori assumption of the originating organism. Global transcriptome construction from 3.03 billion paired-end reads revealed 606,880 unique contigs annotated from 1588 species, often common in all 10 cultivars. Comparisons between transcriptomic and metatranscriptomic methodologies provide clear evidence that nonnative RNA can mistakenly map to reference genomes, especially to conserved regions of common housekeeping genes, such as actin, α/ß-tubulin, and elongation factor 1-α. In Salix, Rubisco activase transcripts were down-regulated in contaminated trees across all 10 cultivars, whereas thiamine thizole synthase and CP12, a Calvin Cycle master regulator, were uniformly up-regulated. De novo assembly approaches, with unconstrained annotation, can improve data quality; care should be taken when exploring such plant genetics to reduce de facto data exclusion by mapping to a single reference genome alone. Salix gene expression patterns strongly suggest cultivar-wide alteration of specific photosynthetic apparatus and protection of the antenna complexes from oxidation damage in contaminated trees, providing an insight into common stress tolerance strategies in a real-world phytoremediation system.


Assuntos
Regulação da Expressão Gênica de Plantas , Salix/genética , Poluentes do Solo , Estresse Fisiológico/genética , Transcriptoma , Animais , Bactérias/genética , Regulação para Baixo , Poluição Ambiental , Recuperação e Remediação Ambiental , Flores/genética , Fungos/genética , Perfilação da Expressão Gênica , Genes Essenciais , Genes de Plantas , Genoma de Planta , Anotação de Sequência Molecular , Mapeamento de Nucleotídeos , Fator 1 de Elongação de Peptídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Salix/enzimologia , Salix/crescimento & desenvolvimento , Salix/metabolismo , Árvores/genética , Árvores/crescimento & desenvolvimento , Tubulina (Proteína)
2.
BMC Plant Biol ; 15: 246, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26459343

RESUMO

BACKGROUND: High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. METHODS: Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. RESULTS: Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. CONCLUSIONS: The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.


Assuntos
Adaptação Fisiológica/genética , Hidrocarbonetos/toxicidade , Petróleo/toxicidade , Salix/genética , Poluentes do Solo/toxicidade , Transcriptoma/genética , Adaptação Fisiológica/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Herbivoria/genética , Anotação de Sequência Molecular , Propanóis/metabolismo , Salix/efeitos dos fármacos , Salix/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos , Árvores/efeitos dos fármacos , Árvores/genética , Árvores/crescimento & desenvolvimento
3.
BMC Evol Biol ; 11: 51, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21349193

RESUMO

BACKGROUND: A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. RESULTS: We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. CONCLUSIONS: We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.


Assuntos
Núcleo Celular/genética , Micorrizas/genética , Esporos Fúngicos/citologia , Microscopia Confocal , Mitose , Micorrizas/citologia , Esporos Fúngicos/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA