Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 17(9): e10156, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34569154

RESUMO

Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.


Assuntos
Fosfoproteínas , Proteômica , Humanos , Espectrometria de Massas , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais
2.
Science ; 351(6278): 1214-8, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26912360

RESUMO

The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A. We observed increased intracellular concentrations of methylthioadenosine (MTA, the metabolite cleaved by MTAP) in cells harboring MTAP deletions. Furthermore, MTA specifically inhibited PRMT5 enzymatic activity. Administration of either MTA or a small-molecule PRMT5 inhibitor showed a modest preferential impairment of cell viability for MTAP-null cancer cell lines compared with isogenic MTAP-expressing counterparts. Together, our findings reveal PRMT5 as a potential vulnerability across multiple cancer lineages augmented by a common "passenger" genomic alteration.


Assuntos
Neoplasias/tratamento farmacológico , Proteína-Arginina N-Metiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Linhagem Celular Tumoral , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacologia , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Humanos , Isoquinolinas/farmacologia , Neoplasias/enzimologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Purina-Núcleosídeo Fosforilase/genética , Pirimidinas/farmacologia , Tionucleosídeos/metabolismo , Tionucleosídeos/farmacologia , Fatores de Transcrição
3.
Nat Med ; 20(6): 682-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24836576

RESUMO

Translating whole-exome sequencing (WES) for prospective clinical use may have an impact on the care of patients with cancer; however, multiple innovations are necessary for clinical implementation. These include rapid and robust WES of DNA derived from formalin-fixed, paraffin-embedded tumor tissue, analytical output similar to data from frozen samples and clinical interpretation of WES data for prospective use. Here, we describe a prospective clinical WES platform for archival formalin-fixed, paraffin-embedded tumor samples. The platform employs computational methods for effective clinical analysis and interpretation of WES data. When applied retrospectively to 511 exomes, the interpretative framework revealed a 'long tail' of somatic alterations in clinically important genes. Prospective application of this approach identified clinically relevant alterations in 15 out of 16 patients. In one patient, previously undetected findings guided clinical trial enrollment, leading to an objective clinical response. Overall, this methodology may inform the widespread implementation of precision cancer medicine.


Assuntos
Algoritmos , Exoma/genética , Neoplasias/genética , Medicina de Precisão/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Células HEK293 , Humanos , Massachusetts , Mutagênese Sítio-Dirigida , Neoplasias/patologia , Medicina de Precisão/tendências , Estatísticas não Paramétricas
4.
J Clin Invest ; 123(6): 2551-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23635776

RESUMO

The PI3K signaling pathway regulates diverse cellular processes, including proliferation, survival, and metabolism, and is aberrantly activated in human cancer. As such, numerous compounds targeting the PI3K pathway are currently being clinically evaluated for the treatment of cancer, and several have shown some early indications of efficacy in breast cancer. However, resistance against these agents, both de novo and acquired, may ultimately limit the efficacy of these compounds. Here, we have taken a systematic functional approach to uncovering potential mechanisms of resistance to PI3K inhibitors and have identified several genes whose expression promotes survival under conditions of PI3K/mammalian target of rapamycin (PI3K/mTOR) blockade, including the ribosomal S6 kinases RPS6KA2 (RSK3) and RPS6KA6 (RSK4). We demonstrate that overexpression of RSK3 or RSK4 supports proliferation upon PI3K inhibition both in vitro and in vivo, in part through the attenuation of the apoptotic response and upregulation of protein translation. Notably, the addition of MEK- or RSK-specific inhibitors can overcome these resistance phenotypes, both in breast cancer cell lines and patient-derived xenograft models with elevated levels of RSK activity. These observations provide a strong rationale for the combined use of RSK and PI3K pathway inhibitors to elicit favorable responses in breast cancer patients with activated RSK.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/enzimologia , Imidazóis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Quinolinas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Aminopiridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Morfolinas/farmacologia , Fases de Leitura Aberta , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais , Transcriptoma , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Epigenetics ; 6(8): 1012-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21725202

RESUMO

The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Metilação de DNA , Impressão Genômica , Proteínas/genética , Alelos , Animais , Desenvolvimento Embrionário/genética , Feminino , Fertilização/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...