Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol ; 54(2): 123-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37922977

RESUMO

Plasmodium parasites infect thousands of species and provide an exceptional system for studying host-pathogen dynamics, especially for multi-host pathogens. However, understanding these interactions requires an accurate assay of infection. Assessing Plasmodium infections using microscopy on blood smears often misses infections with low parasitemias (the fractions of cells infected), and biases in malaria prevalence estimates will differ among hosts that differ in mean parasitemias. We examined Plasmodium relictum infection and parasitemia using both microscopy of blood smears and quantitative polymerase chain reaction (qPCR) on 299 samples from multiple bird species in Hawai'i and fit models to predict parasitemias from qPCR cycle threshold (Ct) values. We used these models to quantify the extent to which microscopy underestimated infection prevalence and to more accurately estimate infection patterns for each species for a large historical study done by microscopy. We found that most qPCR-positive wild-caught birds in Hawaii had low parasitemias (Ct scores ≥35), which were rarely detected by microscopy. The fraction of infections missed by microscopy differed substantially among eight species due to differences in species' parasitemia levels. Infection prevalence was likely 4-5-fold higher than previous microscopy estimates for three introduced species, including Zosterops japonicus, Hawaii's most abundant forest bird, which had low average parasitemias. In contrast, prevalence was likely only 1.5-2.3-fold higher than previous estimates for Himatione sanguinea and Chlorodrepanis virens, two native species with high average parasitemias. Our results indicate that relative patterns of infection among species differ substantially from those observed in previous microscopy studies, and that differences depend on variation in parasitemias among species. Although microscopy of blood smears is useful for estimating the frequency of different Plasmodium stages and host attributes, more sensitive quantitative methods, including qPCR, are needed to accurately estimate and compare infection prevalence among host species.


Assuntos
Malária Aviária , Passeriformes , Plasmodium , Animais , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Havaí/epidemiologia , Parasitemia/epidemiologia , Parasitemia/veterinária , Parasitemia/parasitologia , Microscopia , Mosquitos Vetores , Plasmodium/genética , Animais Selvagens , Passeriformes/parasitologia , Reação em Cadeia da Polimerase/métodos
2.
mBio ; 8(6)2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233897

RESUMO

Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans, a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous studies, presenting challenges for both epizoological tracking of the spread of this fungus and for determining its evolutionary history. We used single nucleotide polymorphisms (SNPs) from whole-genome sequencing and microsatellites to construct high-resolution phylogenies of P. destructans Shallow genetic diversity and the lack of geographic structuring among North American isolates support a recent introduction followed by expansion via clonal reproduction across the epizootic zone. Moreover, the genetic relationships of isolates within North America suggest widespread mixing and long-distance movement of the fungus. Genetic diversity among isolates of P. destructans from Europe was substantially higher than in those from North America. However, genetic distance between the North American isolates and any given European isolate was similar to the distance between the individual European isolates. In contrast, the isolates we examined from Asia were highly divergent from both European and North American isolates. Although the definitive source for introduction of the North American population has not been conclusively identified, our data support the origin of the North American invasion by P. destructans from Europe rather than Asia.IMPORTANCE This phylogenetic study of the bat white-nose syndrome agent, P. destructans, uses genomics to elucidate evolutionary relationships among populations of the fungal pathogen to understand the epizoology of this biological invasion. We analyze hypervariable and abundant genetic characters (microsatellites and genomic SNPs, respectively) to reveal previously uncharacterized diversity among populations of the pathogen from North America and Eurasia. We present new evidence supporting recent introduction of the fungus to North America from a diverse Eurasian population, with limited increase in genetic variation in North America since that introduction.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Quirópteros/microbiologia , Micoses/veterinária , Filogenia , Animais , Ascomicetos/isolamento & purificação , Ascomicetos/patogenicidade , Ásia/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Doenças Transmissíveis Emergentes/veterinária , Europa (Continente)/epidemiologia , Variação Genética , Repetições de Microssatélites , Micoses/epidemiologia , Micoses/microbiologia , América do Norte/epidemiologia , Nariz/microbiologia , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Sequenciamento Completo do Genoma/métodos
3.
Infect Genet Evol ; 11(7): 1577-85, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21875691

RESUMO

The transmission of vector-borne pathogens is greatly influenced by the ecology of their vector, which is in turn shaped by genetic ancestry, the environment, and the hosts that are fed on. One group of vectors, the mosquitoes in the Culex pipiens complex, play key roles in the transmission of a range of pathogens including several viruses such as West Nile and St. Louis encephalitis viruses, avian malaria (Plasmodium spp.), and filarial worms. The Cx. pipiens complex includes Culex pipiens pipiens with two forms, pipiens and molestus, Culex pipiens pallens, Culex quinquefasciatus, Culex australicus, and Culex globocoxitus. While several members of the complex have limited geographic distributions, Cx. pipienspipiens and Cx. quinquefasciatus are found in all known urban and sub-urban temperate and tropical regions, respectively, across the world, where they are often principal disease vectors. In addition, hybrids are common in areas of overlap. Although gaps in our knowledge still remain, the advent of genetic tools has greatly enhanced our understanding of the history of speciation, domestication, dispersal, and hybridization. We review the taxonomy, genetics, evolution, behavior, and ecology of members of the Cx. pipiens complex and their role in the transmission of medically important pathogens. The adaptation of Cx. pipiens complex mosquitoes to human-altered environments led to their global distribution through dispersal via humans and, combined with their mixed feeding patterns on birds and mammals (including humans), increased the transmission of several avian pathogens to humans. We highlight several unanswered questions that will increase our ability to control diseases transmitted by these mosquitoes.


Assuntos
Culex/classificação , Culex/genética , Insetos Vetores/classificação , Insetos Vetores/genética , Animais , Aves , Culex/parasitologia , Culex/virologia , Comportamento Alimentar , Humanos , Insetos Vetores/parasitologia , Insetos Vetores/virologia , Epidemiologia Molecular , Zoonoses/epidemiologia , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...