Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Med Phys ; 50(3): 1756-1765, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36629844

RESUMO

BACKGROUND: Proton radiography (PR) uses highly energetic proton beams to create images where energy loss is the main contrast mechanism. Water-equivalent path length (WEPL) measurements using flat panel PR (FP-PR) have potential for in vivo range verification. However, an accurate WEPL measurement via FP-PR requires irradiation with multiple energy layers, imposing high imaging doses. PURPOSE: A FP-PR method is proposed for accurate WEPL determination based on a patient-specific imaging field with a reduced number of energies (n) to minimize imaging dose. METHODS: Patient-specific FP-PRs were simulated and measured for a head and neck (HN) phantom. An energy selection algorithm estimated spot-wise the lowest energy required to cross the anatomy (Emin) using a water-equivalent thickness map. Starting from Emin, n was restricted to certain values (n = 26, 24, 22, …, 2 for simulations, n = 10 for measurements), resulting in patient-specific FP-PRs. A reference FP-PR with a complete set of energies was compared against patient-specific FP-PRs covering the whole anatomy via mean absolute WEPL differences (MAD), to evaluate the impact of the developed algorithm. WEPL accuracy of patient-specific FP-PRs was assessed using mean relative WEPL errors (MRE) with respect to measured multi-layer ionization chamber PRs (MLIC-PR) in the base of skull, brain, and neck regions. RESULTS: MADs ranged from 2.1 mm (n = 26) to 21.0 mm (n = 2) for simulated FP-PRs, and 7.2 mm for measured FP-PRs (n = 10). WEPL differences below 1 mm were observed across the whole anatomy, except at the phantom surfaces. Measured patient-specific FP-PRs showed good agreement against MLIC-PRs, with MREs of 1.3 ± 2.0%, -0.1 ± 1.0%, and -0.1 ± 0.4% in the three regions of the phantom. CONCLUSION: A method to obtain accurate WEPL measurements using FP-PR with a reduced number of energies selected for the individual patient anatomy was established in silico and validated experimentally. Patient-specific FP-PRs could provide means of in vivo range verification.


Assuntos
Terapia com Prótons , Prótons , Humanos , Água , Radiografia , Imagens de Fantasmas , Cabeça/diagnóstico por imagem
2.
Phys Med Biol ; 66(21)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34598170

RESUMO

OBJECTIVE: Proton range uncertainties can compromise the effectiveness of proton therapy treatments. Water equivalent path length (WEPL) assessment by flat panel detector proton radiography (FP-PR) can provide means of range uncertainty detection. Since WEPL accuracy intrinsically relies on the FP-PR calibration parameters, the purpose of this study is to establish an optimal calibration procedure that ensures high accuracy of WEPL measurements. To that end, several calibration settings were investigated. APPROACH: FP-PR calibration datasets were obtained simulating PR fields with different proton energies, directed towards water-equivalent material slabs of increasing thickness. The parameters investigated were the spacing between energy layers (ΔE) and the increment in thickness of the water-equivalent material slabs (ΔX) used for calibration. 30 calibrations were simulated, as a result of combining ΔE = 9, 7, 5, 3, 1 MeV and ΔX = 10, 8, 5, 3, 2, 1 mm. FP-PRs through a CIRS electron density phantom were simulated, and WEPL images corresponding to each calibration were obtained. Ground truth WEPL values were provided by range probing multi-layer ionization chamber simulations on each insert of the phantom. Relative WEPL errors between FP-PR simulations and ground truth were calculated for each insert. Mean relative WEPL errors and standard deviations across all inserts were computed for WEPL images obtained with each calibration. MAIN RESULTS: Large mean and standard deviations were found in WEPL images obtained with large ΔEvalues (ΔE = 9 or 7 MeV), for any ΔX. WEPL images obtained with ΔE ≤ 5 MeV and ΔX ≤ 5 mm resulted in a WEPL accuracy with mean values within ±0.5% and standard deviations around 1%. SIGNIFICANCE: An optimal FP calibration in the framework of this study was established, characterized by 3 MeV ≤ ΔE ≤ 5 MeV and 2 mm ≤ ΔX ≤ 5 mm. Within these boundaries, highly accurate WEPL acquisitions using FP-PR are feasible and practical, holding the potential to assist future online range verification quality control procedures.


Assuntos
Terapia com Prótons , Calibragem , Imagens de Fantasmas , Prótons , Radiografia , Água
3.
Phys Med Biol ; 65(23): 235036, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33179874

RESUMO

Cone-beam computed tomography (CBCT)- and magnetic resonance (MR)-images allow a daily observation of patient anatomy but are not directly suited for accurate proton dose calculations. This can be overcome by creating synthetic CTs (sCT) using deep convolutional neural networks. In this study, we compared sCTs based on CBCTs and MRs for head and neck (H&N) cancer patients in terms of image quality and proton dose calculation accuracy. A dataset of 27 H&N-patients, treated with proton therapy (PT), containing planning CTs (pCTs), repeat CTs, CBCTs and MRs were used to train two neural networks to convert either CBCTs or MRs into sCTs. Image quality was quantified by calculating mean absolute error (MAE), mean error (ME) and Dice similarity coefficient (DSC) for bones. The dose evaluation consisted of a systematic non-clinical analysis and a clinical recalculation of actually used proton treatment plans. Gamma analysis was performed for non-clinical and clinical treatment plans. For clinical treatment plans also dose to targets and organs at risk (OARs) and normal tissue complication probabilities (NTCP) were compared. CBCT-based sCTs resulted in higher image quality with an average MAE of 40 ± 4 HU and a DSC of 0.95, while for MR-based sCTs a MAE of 65 ± 4 HU and a DSC of 0.89 was observed. Also in clinical proton dose calculations, sCTCBCT achieved higher average gamma pass ratios (2%/2 mm criteria) than sCTMR (96.1% vs. 93.3%). Dose-volume histograms for selected OARs and NTCP-values showed a very small difference between sCTCBCT and sCTMR and a high agreement with the reference pCT. CBCT- and MR-based sCTs have the potential to enable accurate proton dose calculations valuable for daily adaptive PT. Significant image quality differences were observed but did not affect proton dose calculation accuracy in a similar manner. Especially the recalculation of clinical treatment plans showed high agreement with the pCT for both sCTCBCT and sCTMR.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Órgãos em Risco/efeitos da radiação , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Idoso , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica
4.
Phys Med Biol ; 65(23)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33049722

RESUMO

This study evaluates the suitability of convolutional neural networks (CNNs) to automatically process proton radiography (PR)-based images. CNNs are used to classify PR images impaired by several sources of error affecting the proton range, more precisely setup and calibration curve errors. PR simulations were performed in 40 head and neck cancer patients, at three different anatomical locations (fields A, B and C, centered for head and neck, neck and base of skull coverage). Field sizes were 26 × 26cm2for field A and 4.5 × 4.5cm2for fields B and C. Range shift maps were obtained by comparing an unperturbed reference PR against a PR where one or more sources of error affected the proton range. CT calibration curve errors in soft, bone and fat tissues and setup errors in the anterior-posterior and inferior-superior directions were simulated individually and in combination. A CNN was trained for each type of PR field, leading to three CNNs trained with a mixture of range shift maps arising from one or more sources of range error. To test the full/partial/wrong agreement between predicted and actual sources of range error in the range shift maps, exact, partial and wrong match percentages were computed for an independent test dataset containing range shift maps arising from isolated or combined errors, retrospectively. The CNN corresponding to field A showed superior capability to detect isolated and combined errors, with exact matches of 92% and 71% respectively. Field B showed exact matches of 80% and 54%, and field C resulted in exact matches of 77% and 41%. The suitability of CNNs to classify PR-based images containing different sources of error affecting the proton range was demonstrated. This procedure enables the detection of setup and calibration curve errors when they appear individually or in combination, providing valuable information for the interpretation of PR images.


Assuntos
Neoplasias de Cabeça e Pescoço , Prótons , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Radiografia , Estudos Retrospectivos
5.
Phys Med Biol ; 65(9): 095002, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32143207

RESUMO

In-room imaging is a prerequisite for adaptive proton therapy. The use of onboard cone-beam computed tomography (CBCT) imaging, which is routinely acquired for patient position verification, can enable daily dose reconstructions and plan adaptation decisions. Image quality deficiencies though, hamper dose calculation accuracy and make corrections of CBCTs a necessity. This study compared three methods to correct CBCTs and create synthetic CTs that are suitable for proton dose calculations. CBCTs, planning CTs and repeated CTs (rCT) from 33 H&N cancer patients were used to compare a deep convolutional neural network (DCNN), deformable image registration (DIR) and an analytical image-based correction method (AIC) for synthetic CT (sCT) generation. Image quality of sCTs was evaluated by comparison with a same-day rCT, using mean absolute error (MAE), mean error (ME), Dice similarity coefficient (DSC), structural non-uniformity (SNU) and signal/contrast-to-noise ratios (SNR/CNR) as metrics. Dosimetric accuracy was investigated in an intracranial setting by performing gamma analysis and calculating range shifts. Neural network-based sCTs resulted in the lowest MAE and ME (37/2 HU) and the highest DSC (0.96). While DIR and AIC generated images with a MAE of 44/77 HU, a ME of -8/1 HU and a DSC of 0.94/0.90. Gamma and range shift analysis showed almost no dosimetric difference between DCNN and DIR based sCTs. The lower image quality of AIC based sCTs affected dosimetric accuracy and resulted in lower pass ratios and higher range shifts. Patient-specific differences highlighted the advantages and disadvantages of each method. For the set of patients, the DCNN created synthetic CTs with the highest image quality. Accurate proton dose calculations were achieved by both DCNN and DIR based sCTs. The AIC method resulted in lower image quality and dose calculation accuracy was reduced compared to the other methods.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Terapia com Prótons/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica
6.
Phys Med Biol ; 65(2): 025006, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31801119

RESUMO

The relative biological effectiveness (RBE) of protons is highly variable and difficult to quantify. However, RBE is related to the local ionization density, which can be related to the physical measurable dose weighted linear energy transfer (LETD). The aim of this study was to validate the LETD calculations for proton therapy beams implemented in a commercially available treatment planning system (TPS) using microdosimetry measurements and independent LETD calculations (Open-MCsquare (MCS)). The TPS (RayStation v6R) was used to generate treatment plans on the CIRS-731-HN anthropomorphic phantom for three anatomical sites (brain, nasopharynx, neck) for a spherical target (Ø = 5 cm) with uniform target dose to calculate the LETD distribution. Measurements were performed at the University Medical Center Groningen proton therapy center (Proteus Plus, IBA) using a µ +-probe utilizing silicon on insulator microdosimeters capable of detecting lineal energies as low as 0.15 keV µm-1 in tissue. Dose averaged mean lineal energy [Formula: see text] depth-profiles were measured for 70 and 130 MeV spots in water and for the three treatment plans in water and an anthropomorphic phantom. The [Formula: see text] measurements were compared to the LETD calculated in the TPS and MCS independent dose calculation engine. D · [Formula: see text] was compared to D · LETD in terms of a gamma-index with a distance-to-agreement criteria of 2 mm and increasing dose difference criteria to determine the criteria for which a 90% pass rate was accomplished. Measurements of D · [Formula: see text] were in good agreement with the D · LETD calculated in the TPS and MCS. The 90% passing rate threshold was reached at different D · LETD difference criteria for single spots (TPS: 1% MCS: 1%), treatment plans in water (TPS: 3% MCS: 6%) and treatment plans in an anthropomorphic phantom (TPS: 6% MCS: 1%). We conclude that D · LETD calculations accuracy in the RayStation TPS and open MCSquare are within 6%, and sufficient for clinical D · LETD evaluation and optimization. These findings remove an important obstacle in the road towards clinical implementation of D · LETD evaluation and optimization of proton therapy treatment plans. Novelty and significance The dose weighed linear energy transfer (LETD) distribution can be calculated for proton therapy treatment plans by Monte Carlo dose engines. The relative biological effectiveness (RBE) of protons is known to vary with the LETD distribution. Therefore, there exists a need for accurate calculation of clinical LETD distributions. Previous LETD validations have focused on general purpose Monte Carlo dose engines which are typically not used clinically. We present the first validation of mean lineal energy [Formula: see text] measurements of the LETD against calculations by the Monte Carlo dose engines of the Raystation treatment planning system and open MCSquare.


Assuntos
Transferência Linear de Energia , Método de Monte Carlo , Terapia com Prótons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
7.
Sci Rep ; 9(1): 11629, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406211

RESUMO

Non-planar Fin Field Effect Transistors (FinFET) are already present in modern devices. The evolution from the well-established 2D planar technology to the design of 3D nanostructures rose new fabrication processes, but a technique capable of full characterization, particularly their dopant distribution, in a representative (high statistics) way is still lacking. Here we propose a methodology based on Medium Energy Ion Scattering (MEIS) to address this query, allowing structural and compositional quantification of advanced 3D FinFET devices with nanometer spatial resolution. When ions are backscattered, their energy losses unfold the chemistry of the different 3D compounds present in the structure. The FinFET periodicity generates oscillatory features as a function of backscattered ion energy and, in fact, these features allow a complete description of the device dimensions. Additionally, each measurement is performed over more than thousand structures, being highly representative in a statistical meaning. Finally, independent measurements using electron microscopy corroborate the proposed methodology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...