Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 573: 139-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27372752

RESUMO

Lysine acetylation is a posttranslational modification that is carried out by acetyltransferases. The MYST proteins form the largest and most diverse family of acetyltransferases, which regulate gene expression, DNA repair, and cell cycle homeostasis, among other activities, by acetylating both histone and nonhistone proteins. This chapter will describe methods for the preparation and biochemical characterization of MYST family acetyltransferases, including protocols for the preparation of recombinant protein, enzyme assays for measuring steady-state parameters, and binding assays to measure cofactor and inhibitor binding. We also provide details on adapting these assays for high-throughput screening for small molecule MYST inhibitors. This chapter seeks to prepare researchers for some hurdles that they may encounter when studying the MYST proteins so that there may be better opportunity to plan appropriate controls and obtain high-quality data.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/farmacologia , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Acetilcoenzima A/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Histona Acetiltransferases/química , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
2.
Oncogene ; 28(3): 325-33, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18978813

RESUMO

The tumor suppressor p53 regulates downstream genes in response to many cellular stresses and is frequently mutated in human cancers. Here, we report the use of a crosslinking strategy to trap a tetrameric p53 DNA-binding domain (p53DBD) bound to DNA and the X-ray crystal structure of the protein/DNA complex. The structure reveals that two p53DBD dimers bind to B form DNA with no relative twist and that a p53 tetramer can bind to DNA without introducing significant DNA bending. The numerous dimer-dimer interactions involve several strictly conserved residues, thus suggesting a molecular basis for p53DBD-DNA binding cooperativity. Surface residue conservation of the p53DBD tetramer bound to DNA highlights possible regions of other p53 domain or p53 cofactor interactions.


Assuntos
DNA/química , Proteína Supressora de Tumor p53/química , Cristalografia por Raios X , DNA/metabolismo , Dimerização , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteína Supressora de Tumor p53/metabolismo
3.
Oncogene ; 26(37): 5528-40, 2007 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-17694092

RESUMO

The post-translational modification of histones plays an important role in chromatin regulation, a process that insures the fidelity of gene expression and other DNA transactions. Of the enzymes that mediate post-translation modification, the histone acetyltransferase (HAT) and histone deacetylase (HDAC) proteins that add and remove acetyl groups to and from target lysine residues within histones, respectively, have been the most extensively studied at both the functional and structural levels. Not surprisingly, the aberrant activity of several of these enzymes have been implicated in human diseases such as cancer and metabolic disorders, thus making them important drug targets. Significant mechanistic insights into the function of HATs and HDACs have come from the X-ray crystal structures of these enzymes both alone and in liganded complexes, along with associated enzymatic and biochemical studies. In this review, we will discuss what we have learned from the structures and related biochemistry of HATs and HDACs and the implications of these findings for the design of protein effectors to regulate gene expression and treat disease.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Histona Acetiltransferases/química , Histona Desacetilases/química , Histonas/química , Acetilação , Sequência de Aminoácidos , Animais , Inibidores Enzimáticos/farmacologia , Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Inibidores de Histona Desacetilases , Humanos , Dados de Sequência Molecular , Conformação Proteica
4.
Biochem Soc Trans ; 32(Pt 6): 904-9, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15506920

RESUMO

The yeast Sir2 (silent information regulator-2) protein functions as an NAD(+)-dependent histone deacetylase to silence gene expression from the mating-type locus, tolomeres and rDNA and also promotes longevity and genome stability in response to calorie restriction. Homologues of yeast Sir2 have been identified in the three domains of bacteria, archaea and eukaryotes; in mammalian cells, Sir2 proteins also deacetylate non-histone proteins such as the p53 tumour suppressor protein, alpha-tubulin and forkhead transcription factors to mediate diverse biological processes including metabolism, cell motility and cancer. We have determined the X-ray crystal structure of a Sir2 homologue from yeast Hst2 (yHst2), in various liganded forms, including the yHst2/acetyl-Lys-16 histone H4/NAD(+) ternary complex; we have also performed related biochemical studies to address the conserved mode of catalysis by these enzymes as well as the distinguishing features that allow different members of the family to target their respective cognate substrates. These studies have implications for the structure-based design of Sir2-specific small molecule compounds, which might modulate Sir2 function for therapeutic application.


Assuntos
Histona Desacetilases/química , NAD/metabolismo , Sirtuínas/química , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Histona Desacetilases/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo
5.
Structure ; 9(12): 1127-33, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11738039

RESUMO

Histone deacetylases catalyze the removal of the acetyl moiety from acetyl-lysine within histones to promote gene repression and silencing. These enzymes fall into distinct families based on primary sequence homology and functional properties in vivo. Recent structural studies of histone deacetylases and their homologs from bacteria have provided important insights into the mode of substrate recognition and catalysis by these enzymes.


Assuntos
Histona Desacetilases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , Histona Desacetilases/classificação , Histona Desacetilases/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
Hybridoma ; 20(4): 257-63, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11604112

RESUMO

Generation of three monoclonal antibodies (MAbs) to the major oncoproteins of human papillomavirus (HPV) was accomplished by an intense prime/boost regimen. Mice were primed with expression vectors expressing either the E6 or E7 oncoproteins of HPV-16 followed by boosting with a vaccinia virus construct and a replication-defective E1-deleted adenoviral recombinant of the human strain 5, and last, with baculovirus-derived HPV-16 E6 and E7 proteins in incomplete Freunds' adjuvant. Splenocytes were then fused with a myeloma cell line. The vaccination protocol generated one anti-E7 MAb of the IgM isotype and two anti-E6 MAbs of the IgG1 subisotype. The MAbs were tested for functionality in standard laboratory assays and found to detect the E6 and E7 proteins, respectively. The E7 MAb cross-reacted with the HPV-1a E7 oncoprotein. The binding sites of the MAbs were mapped to defined regions of each viral protein.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Antígenos Virais/imunologia , Proteínas Oncogênicas Virais/imunologia , Papillomaviridae/imunologia , Proteínas Repressoras , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/análise , Anticorpos Antivirais/análise , Formação de Anticorpos , Western Blotting , Células Cultivadas , Primers do DNA/química , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Dados de Sequência Molecular , Proteínas Oncogênicas Virais/isolamento & purificação , Proteínas E7 de Papillomavirus , Fragmentos de Peptídeos/imunologia , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos
7.
J Mol Biol ; 311(3): 433-44, 2001 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-11492997

RESUMO

Histone acetyltranferase (HAT) enzymes are the catalytic subunits of multisubunit protein complexes that acetylate specific lysine residues on the N-terminal regions of the histone components of chromatin to promote gene activation. These enzymes, which now include more than 20 members, fall into distinct families that generally have high sequence similarity and related substrate specificity within families, but have divergent sequence and substrate specificity between families. Significant insights into the mode of catalysis and histone substrate binding have been provided by the structure determination of the divergent HAT enzymes Hat1, Gcn5/PCAF and Esa1. A comparison of these structures reveals a structurally conserved central core domain that mediates extensive interactions with the acetyl-coenzyme A cofactor, and structurally divergent N and C-terminal domains. A correlation of these structures with other studies reveals that the core domain plays a particularly important role in histone substrate catalysis and that the N and C-terminal domains play important roles in histone substrate binding. These correlations imply a related mode of catalysis and histone substrate binding by a diverse group of HAT enzymes.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae , Acetilcoenzima A/metabolismo , Animais , Sítios de Ligação , Catálise , Histona Acetiltransferases , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Transcrição Gênica
8.
Cell Mol Life Sci ; 58(5-6): 693-703, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11437231

RESUMO

Histone acetyltranferase (HAT) enzymes are the catalytic subunit of large multisubunit HAT complexes that acetylate the epsilon-amino group of specific lysine residues on histone tails to promote transcriptional activation. Recent structural and functional studies on the divergent HAT enzymes Gcn5/PCAF, Esa1 and Hat1 have provided new insights into the underlying mechanism of histone binding and acetylation by HAT proteins. The three HAT enzymes contain a structurally conserved core domain that plays a functionally conserved role in binding the coenzyme A cofactor and in harboring the putative general base for catalysis. Structurally variable N- and C-terminal domains appear to contain a related scaffold that mediates histone substrate binding. These data provide a framework for understanding the structure and function of other more divergent HAT proteins such as TAF(II)250 and CBP/p300, and provides a starting point for understanding how HAT proteins may cooperate with other factors within in vivo HAT complexes to promote transcriptional activation.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae , Acetiltransferases/genética , Animais , Sítios de Ligação , Catálise , Coenzima A/metabolismo , Histona Acetiltransferases , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Família Multigênica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Transcrição Gênica
9.
Gene ; 272(1-2): 1-9, 2001 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-11470504

RESUMO

Specific changes in chromatin structure are associated with transcriptional regulation. These chromatin alterations include both covalent modifications of the amino termini of histones as well as ATP-dependent non-covalent remodeling of nucleosomes. Certain protein domains, such as the bromodomains, are commonly associated with both of these classes of enzymes that alter chromatin. This review discusses recent advances in understanding the structure and function of bromodomains. Most significantly, a role of bromodomains has been revealed in binding to acetylated lysine residues in histone tails. Interactions between bromodomains and modified histones may be an important mechanism underlying chromatin structural changes and gene regulation.


Assuntos
Cromatina/genética , Regulação da Expressão Gênica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cromatina/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Nat Rev Mol Cell Biol ; 2(6): 422-32, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11389466

RESUMO

Histones are the predominant protein components of chromatin and are subject to specific post-translational modifications that are correlated with transcriptional competence. Among these histone modifications are acetylation, phosphorylation and methylation, and recent studies reveal that conserved protein modules mediate the attachment, removal or recognition of these modifications. It is becoming clear that appropriate coordination of histone modifications and their manipulations by conserved protein modules are integral to gene-specific transcriptional regulation within chromatin.


Assuntos
Cromatina/química , Cromatina/genética , Histonas/química , Histonas/genética , Animais , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Transcrição Gênica , Ativação Transcricional
11.
Curr Opin Genet Dev ; 11(2): 155-61, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11250138

RESUMO

Histone acetyltransferases (HATs) directly link chromatin modification to gene activation. Recent structure/function studies provide insights into HAT catalysis and histone binding, and genetic studies suggest cross-talk between acetylation and other histone modifications. Developmental aberrations in mice and certain human cancers are associated with HAT mutations, further highlighting the importance of these enzymes to normal cell growth and differentiation.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae , Acetilação , Acetiltransferases/genética , Animais , Catálise , Cromatina/genética , Cromatina/metabolismo , Desenvolvimento Embrionário e Fetal , Histona Acetiltransferases , Humanos , Camundongos , Neoplasias/etiologia , Transcrição Gênica , Leveduras/enzimologia
12.
J Biol Chem ; 276(15): 12120-7, 2001 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-11152481

RESUMO

The p53 tumor suppressor is a sequence-specific DNA-binding protein that activates transcription in response to DNA damage to promote cell cycle arrest or apoptosis. The p53 protein functions in a tetrameric form in vivo and contains four domains including an N-terminal transcriptional activation domain, a C-terminal regulatory domain, a tetramerization domain, and a central core DNA-binding domain that is the site of the majority of tumor-derived mutations. Here we report the 2.7-A crystal structure of the mouse p53 core domain. Like the human p53 core domain in complex with DNA, the mouse p53 core domain adopts an immunoglobulin-like beta sandwich architecture with a series of loops and short helices at opposite ends of the beta sandwich. Comparison of the DNA-bound and DNA-free p53 core domains reveals that while the central beta sandwich architecture remains largely unchanged, a loop region important for DNA binding undergoes significant rearrangement. Although this loop region mediates major groove DNA contacts in the DNA-bound structure, it adopts a conformation that is incompatible with DNA binding in the DNA-free structure. Interestingly, crystals of the DNA-free core domain contain a noncrystallographic trimer with three nearly identical subunit-subunit (dimer) contacts. These dimer contacts align the p53 core domains in a way that is incompatible with simultaneous DNA binding by both protomers of the dimer. Surprisingly, similar dimer contacts are observed in crystals of the human p53 core domain with DNA in which only one of the three p53 protomers in the asymmetric unit cell is specifically bound to DNA. We propose that the p53 core domain dimer that is seen in the crystals described here represents a physiologically relevant inactive form of p53 that must undergo structural rearrangement for sequence-specific DNA binding.


Assuntos
DNA/metabolismo , Proteína Supressora de Tumor p53/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Camundongos , Modelos Moleculares , Mutação , Conformação Proteica , Eletricidade Estática , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
J Mol Biol ; 314(3): 495-506, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11846562

RESUMO

Combinatorial DNA binding by proteins for promoter-specific gene activation is a common mode of DNA regulation in eukaryotic organisms, and occurs at the promoter of the c-fos proto-oncogene. The c-fos promoter contains a serum response element (SRE) that mediates ternary complex formation with the Ets proteins SAP-1 or Elk-1 and the MADS-box protein, serum response factor (SRF). Here, we report the crystal structure of a ternary SAP-1/SRF/c-fos SRE DNA complex containing the minimal DNA-binding domains of each protein. The structure of the complex reveals that the SAP-1 monomer and SRF dimer are bound on opposite faces of the DNA, and that the DNA recognition helix of SAP-1 makes direct contact with the DNA recognition helix of one of the two SRF subunits. These interactions facilitate an 82 degrees DNA bend around SRF and a modulation of protein-DNA contacts by each protein when compared to each of the binary DNA complexes. A comparison with a recently determined complex containing SRF, an idealized DNA site, and a SAP-1 fragment containing a SRF-interacting B-box region, shows a similar overall architecture but also shows important differences. Specifically, the comparison suggests that the B-box region of the Ets protein does not significantly influence DNA recognition by either of the proteins, and that the sequence of the DNA target effects the way in which the two proteins cooperate for DNA recognition. These studies have implications for how DNA-bound SRF may modulate the DNA-binding properties of other Ets proteins such as Elk-1, and for how other Ets proteins may modulate the DNA-binding properties of other DNA-bound accessory factors to facilitate promoter-specific transcriptional responses.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Resposta Sérica/química , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/química , DNA/genética , Dimerização , Genes Fúngicos/genética , Humanos , Substâncias Macromoleculares , Proteína 1 de Manutenção de Minicromossomo/química , Proteína 1 de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Elementos de Resposta/genética , Alinhamento de Sequência , Proteínas Elk-1 do Domínio ets , Proteínas Elk-4 do Domínio ets
14.
Mol Cell ; 6(5): 1195-205, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11106757

RESUMO

Esa1 is the catalytic subunit of the NuA4 histone acetylase (HAT) complex that acetylates histone H4, and it is a member of the MYST family of HAT proteins that includes the MOZ oncoprotein and the HIV-1 Tat interacting protein Tip60. Here we report the X-ray crystal structure of the HAT domain of Esa1 bound to coenzyme A and investigate the protein's catalytic mechanism. Our data reveal that Esa1 contains a central core domain harboring a putative catalytic base, and flanking domains that are implicated in histone binding. Comparisons with the Gcn5/PCAF and Hat1 proteins suggest a unified mechanism of catalysis and histone binding by HAT proteins, whereby a structurally conserved core domain mediates catalysis, and sequence variability within a structurally related N- and C-terminal scaffold determines substrate specificity.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Coenzima A/metabolismo , Proteínas de Saccharomyces cerevisiae , Leveduras/enzimologia , Acetiltransferases/classificação , Acetiltransferases/genética , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Coenzima A/química , Sequência Conservada , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases , Histonas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato , Leveduras/genética
15.
Biochemistry ; 39(51): 16033-45, 2000 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-11123931

RESUMO

Human papillomavirus 16 E7 (HPV16 E7) and adenovirus 5 E1A (Ad5 E1A) are encoded by highly divergent viruses yet are functionally similar in their ability to bind the retinoblastoma (pRB) tumor suppressor protein, causing the aberrant displacement of E2F trancription factors. The amino acid residues of HPV16 E7 that are necessary for stability, for inhibition of pRB function, and for cell transformation are also necessary for E7 oligomerization. However, neither the specific oligomerization state of HPV16 E7 nor of Ad5 E1A as a function of pRB-binding has been characterized. To gain insight into HPV16 E7 and Ad5 E1A oligomerization properties, sedimentation equilibrium experiments were performed with recombinant HPV16 E7 and Ad5 E1A proteins. These studies reveal that, despite the overall functional similarities between these proteins, monomers, dimers, and tetramers of HPV16 E7 were detected while only reversible monomer-dimer association was identified for Ad5 E1A. The apparent K(d(monomer)-(dimer)) of HPV16 E7 is approximately 100-fold lower than that of a comparable region of Ad5 E1A, and it is concluded that under physiological protein concentrations HPV16 E7 exists primarily as a dimer. Sedimentation equilibrium experiments of pRB/Ad5 E1A and of pRB/HPV16 E7 complexes demonstrate that the tight association of pRB with the viral oncoproteins does not disturb their inherent oligomerization properties. Taken together, this study demonstrates significant differences between the Ad5 E1A and HPV16 E7 oligomerization states that are potentially related to their distinct structures and specific mechanisms of pRB-inactivation.


Assuntos
Proteínas E1A de Adenovirus/química , Proteínas Oncogênicas Virais/química , Papillomaviridae/química , Proteína do Retinoblastoma/química , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/isolamento & purificação , Dimerização , Humanos , Substâncias Macromoleculares , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/isolamento & purificação , Proteínas E7 de Papillomavirus , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteína do Retinoblastoma/antagonistas & inibidores , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/isolamento & purificação , Soluções , Ultracentrifugação
16.
Anal Biochem ; 287(2): 319-28, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11112280

RESUMO

Histone N-acetyltransferases (HATs) are a group of enzymes which acetylate specific lysine residues in the N-terminal tails of nucleosomal histones to promote transcriptional activation. Recent structural and enzymatic work on the GCN5/PCAF HAT family has elucidated the structure of their catalytic domain and mechanism of histone acetylation. However, the substrate specificity of these enzymes has not been quantitatively investigated. Utilizing a novel microplate fluorescent HAT assay which detects the enzymatic production of coenzyme A (CoA), we have compared the activities of the HAT domains of human PCAF and its GCN5 homologue from yeast and Tetrahymena and found that they have similar kinetic parameters. PCAF was further assayed with a series of different length histone H3 peptide substrates, which revealed that the determinants for substrate recognition lie within a 19-residue sequence. Finally, we evaluated the acetylation of three putative PCAF substrates, histones H3 and H4 and the transcription factor p53, and have determined that histone H3 is significantly preferred over the histone H4 and p53 substrates. Taken together, the fluorescent acetyltransferase assay presented here should be widely applicable to other HAT enzymes, and the results obtained with PCAF demonstrate a strong substrate preference for the N-terminal residues of histone H3.


Assuntos
Acetiltransferases/metabolismo , Corantes Fluorescentes/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Transativadores/metabolismo , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Acetiltransferases/química , Sequência de Aminoácidos , Proteína de Ligação a CREB , Proteínas de Ciclo Celular , Histona Acetiltransferases , Histonas/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/química , Conformação Proteica , Especificidade por Substrato , Transativadores/química , Fatores de Transcrição , Fatores de Transcrição de p300-CBP
17.
Protein Expr Purif ; 20(3): 435-43, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11087683

RESUMO

This report describes the development and application of a dual vector coexpression system for the overproduction of heteromeric cell cycle and transcriptional regulatory protein complexes in bacteria. To facilitate these studies we constructed a T7-based expression plasmid, pRM1 that contains an origin of replication derived from p15A, and a gene encoding kanamycin resistance. This expression vector is compatible with ColE1-derived plasmids found in the pET family of T7 expression vectors, which encode ampicillin resistance. It also has the same multiple cloning sites as the pET- derived pRSET vector, allowing easy shuttling between the two expression vectors. Cotransformation of the pRM1 and pET-derived expression vectors into an Escherichia coli strain such as BL21(DE3) results in a significant level of coexpression of heteromeric protein complexes. We demonstrate the applicability of combining the pRM1 and pET-derived vectors for the coexpression of cell cycle regulatory components, pRB/E7 and pRB/E1a, and the transcriptional regulatory complexes, SRF/SAP-1 and SRF/Elk-1. We further use the pRB/E1a complex to demonstrate that these coexpressed complexes can be purified to homogeneity for further studies. Use of the pRM1 vector in combination with the pET-derived vectors should be generally applicable for the large-scale coexpression and purification of a wide variety of heteromeric protein complexes for biochemical, biophysical, and structural studies.


Assuntos
Bacteriófago T7/genética , Clonagem Molecular/métodos , Escherichia coli/genética , Vetores Genéticos , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas Virais/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Fator de Resposta Sérica
18.
Nucleic Acids Res ; 28(20): 3853-63, 2000 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11024163

RESUMO

HAP1 is a transcription factor in yeast whose DNA-binding domain has been implicated in directly affecting transcriptional activation. Two separate mutations in the DNA-binding domain, S63G (HAP1-PC7) and S63R (HAP1-18), retain wild-type binding affinity. However, HAP1-PC7 is transcriptionally silent while HAP1-18 shows highly elevated levels of transcription. We have determined the X-ray crystal structure of the DNA-binding domain of HAP1-PC7 bound to its DNA target, UAS(CYC7), and compared it to the previously solved HAP1-wt and HAP1-18 complexes to UAS(CYC7). Additionally, we have quantitatively compared the DNA-binding affinity and specificity of the HAP1-PC7, HAP1-18 and HAP1-wt DNA-binding domains. We show that, although the DNA-binding domains of these three proteins bind UAS(CYC7) with comparable affinity and specificity, the protein-DNA interactions are dramatically different between the three complexes. Conserved protein-DNA interactions are largely restricted to an internal DNA sequence that excludes one of the two conserved DNA half-sites of UAS(CYC7) suggesting a mode of recognition distinct from other HAP1 family members. Alternative protein-DNA interactions result in divergent DNA configurations between the three complexes. These results suggest that the differential transcriptional activities of the HAP1, HAP1-18 and HAP1-PC7 proteins are due, at least in part, to alternative protein-DNA contacts, and implies that HAP1-DNA interactions have direct allosteric effects on transcriptional activation.


Assuntos
Carbono-Oxigênio Liases/química , Carbono-Oxigênio Liases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA/metabolismo , Mutação , Ativação Transcricional , Leveduras/química , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sequência de Bases , Carbono-Oxigênio Liases/genética , Cristalografia por Raios X , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Fúngicos/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Elementos de Resposta/genética , Alinhamento de Sequência , Especificidade por Substrato , Termodinâmica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Mol Cell ; 5(6): 917-26, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10911986

RESUMO

Multiple covalent modifications exist in the amino-terminal tails of core histones, but whether a relationship exists between them is unknown. We examined the relationship between serine 10 phosphorylation and lysine 14 acetylation in histone H3 and have found that, in vitro, several HAT enzymes displayed increased activity on H3 peptides bearing phospho-Ser-10. This augmenting effect of Ser-10 phosphorylation on acetylation by yGcn5 was lost by substitution of alanine for arginine 164 [Gcn5(R164A)], a residue close to Ser-10 in the structure of the ternary tGcn5/CoA/histone H3 complex. Gcn5(R164A) had reduced activity in vivo at a subset of Gcn5-dependent promoters, and, strikingly, transcription of this same subset of genes was also impaired by substitution of serine 10 to alanine in the histone H3 tail. These observations suggest that transcriptional regulation occurs by multiple mechanistically linked covalent modifications of histones.


Assuntos
Proteínas de Ligação a DNA , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Arginina/genética , Arginina/metabolismo , Divisão Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases , Histonas/genética , Substâncias Macromoleculares , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fragmentos de Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Regiões Promotoras Genéticas , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Recombinantes , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ativação Transcricional/genética
20.
Nat Struct Biol ; 7(4): 292-7, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10742173

RESUMO

SAP-1 and Elk-1 are members of a large group of eukaryotic transcription factors that contain a conserved ETS DNA binding domain and that cooperate with the serum response factor (SRF) to activate transcription of the c-fos protooncogene. Despite the high degree of sequence similarity, which includes an identical amino acid sequence for the DNA recognition helix within the ETS domain of these proteins, they exhibit different DNA binding properties. Here we report the 2.1 ¿ crystal structure of the ETS domain of Elk-1 bound to a high affinity E74 DNA (E74DNA) site and compare it to a SAP-1-E74DNA complex. This comparison reveals that the differential DNA binding properties of these proteins are mediated by non-conserved residues distal to the DNA binding surface that function to orient conserved residues in the DNA recognition helix for protein-specific DNA contacts. As a result, nearly one-third of the interactions between the protein recognition helix and the DNA are different between the SAP-1 and Elk-1 DNA complexes. Taken together, these studies reveal a novel mechanism for the modulation of DNA binding specificity within a conserved DNA binding domain, and have implications for how highly homologous ETS proteins exhibit differential DNA-binding properties.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Genes fos/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Regiões Promotoras Genéticas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-ets , Elementos de Resposta/genética , Especificidade por Substrato , Fatores de Transcrição/genética , Proteínas Elk-1 do Domínio ets , Proteínas Elk-4 do Domínio ets
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...