Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37873339

RESUMO

Vesicular monoamine transporter 2 (VMAT2) is an essential transporter that regulates brain monoamine transmission and is important for mood, cognition, motor activity, and stress regulation. However, VMAT2 remains underexplored as a pharmacological target. In this study, we report that tricyclic and tetracyclic antidepressants acutely inhibit, but persistently upregulate VMAT2 activity by promoting VMAT2 protein maturation. Importantly, the VMAT2 upregulation effect was greater in BE(2)-M17 cells that endogenously express VMAT2 as compared to a heterologous expression system (HEK293). The net sustained effect of tricyclics and tetracyclics is an upregulation of VMAT2 activity, despite their acute inhibitory effect. Furthermore, imipramine and mianserin, two representative compounds, also demonstrated rescue of nine VMAT2 variants that cause Brain Vesicular Monoamine Transport Disease (BVMTD). VMAT2 upregulation could be beneficial for disorders associated with reduced monoamine transmission, including mood disorders and BVMTD, a rare but often fatal condition caused by a lack of functional VMAT2. Our findings provide the first evidence that small molecules can upregulate VMAT2 and have potential therapeutic benefit for various neuropsychiatric conditions.

2.
Int J Biochem Cell Biol ; 158: 106405, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966906

RESUMO

We studied, using a combination of animal and cellular models, the glial mechanisms underlying the anti-neuropathic and anti-inflammatory properties of PAM-2 [(E)-3-furan-2-yl-N-p-tolyl-acrylamide], a positive allosteric modulator of α7 nicotinic acetylcholine receptors (nAChRs). In mice, PAM-2 decreased the inflammatory process induced by the combination of oxaliplatin (OXA), a chemotherapeutic agent, and interleukin-1ß (IL-1ß), a pro-inflammatory molecule. In the brain and spinal cord of treated animals, PAM-2 reduced pro-inflammatory cytokines/chemokines by mechanisms involving mRNA downregulation of factors in the toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway, and increased the precursor of brain-derived neurotrophic factor (proBDNF). To determine the molecular mechanisms underlying the anti-inflammatory activity of PAM-2, both human C20 microglia and normal human astrocytes (NHA) were used. The results showed that PAM-2-induced potentiation of glial α7 nAChRs decreases OXA/IL-1ß-induced overexpression of inflammatory molecules by different mechanisms, including mRNA downregulation of factors in the NF-κB pathway (in microglia and astrocyte) and ERK (only in microglia). The OXA/IL-1ß-mediated reduction in proBDNF was prevented by PAM-2 in microglia, but not in astrocytes. Our findings also indicate that OXA/IL-1ß-induced organic cation transporter 1 (OCT1) expression is decreased by PAM-2, suggesting that decreased OXA influx may be involved in the protective effects of PAM-2. The α7-selective antagonist methyllycaconitine blocked the most important effects mediated by PAM-2 at both animal and cellular levels, supporting a mechanism involving α7 nAChRs. In conclusion, glial α7 nAChR stimulation/potentiation downregulates neuroinflammatory targets, and thereby remains a promising therapeutic option for cancer chemotherapy-induced neuroinflammation and neuropathic pain.


Assuntos
Antineoplásicos , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Humanos , Camundongos , Anti-Inflamatórios , Neuroglia/metabolismo , NF-kappa B/metabolismo
3.
Food Chem ; 383: 132565, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35245834

RESUMO

Recognized for its nutritional and therapeutic use, extra-virgin Argan Oil (EVAO) is frequently adulterated. Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS) spectra were applied to quantify adulterants (i.e., Argan oil of lower quality (LQAO), olive oil (OO), and sunflower oil (SO)) in EVAO. Four data sets, i.e., using H3O+, NO+, O2+ reagent ions, and the combined data were considered. Soft independent modelling of class analogy (SIMCA), and partial least squares discriminant analysis (PLS-DA) were assessed to distinguish adulterated- from pure EVAO. The effectiveness of SIFT-MS associated with PLS and support vector machine (SVM) regression to quantify trace adulterants in EVAO was evaluated. Variable Importance in Projection (VIP), and interval-PLS (iPLS) were also investigated to extract useful features. Different models were built to predict the EVAO authenticity and the degree of adulteration. High accuracy was achieved. SIFT-MS spectra handled with the appropriate chemometric tools were found suitable for the quality evaluation of EVAO.


Assuntos
Quimiometria , Óleos de Plantas , Contaminação de Alimentos/análise , Íons/análise , Espectrometria de Massas/métodos , Azeite de Oliva/química , Óleos de Plantas/química
4.
J Chromatogr A ; 1670: 462972, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35339746

RESUMO

Argan (Argania spinosa L.) fruit kernels' composition has been poorly studied and received less research intensity than the resulting Argan oil. The Moroccan Argan kernels contain a wealth of metabolites and can be investigated for nutritional and health aspects as well as for economic benefits. Ultra-Performance Liquid Chromatography Mass Spectrometry (UPLC-MS) was employed to trace the geographical origin of Argan kernels based on secondary-metabolite profiles. One-hundred and twenty Argan fruit kernels from five regions ('Agadir', 'Ait-Baha' 'Essaouira', 'Tiznit' and 'Taroudant') were studied. Characterization and quantification of 36 secondary metabolites (33 polyphenolic and 3 non-phenolic) were achieved. Those metabolites are highly influenced by the geographic origin. Then, the untargeted UPLC-MS fingerprint was decomposed by metabolomic data handling tools, such as multivariate curve resolution alternating least squares (MCR-ALS) and XCMS. The two resulting data matrices were pretreated and prepared separately by chemometric tools and then two data fusion strategies (low- and mid-levels) were applied on them. The four data sets were comparatively investigated. Principal component analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Soft Independent Modeling of Class Analogies (SIMCA) were used to classify samples. The exploration or classification models demonstrated a good ability to discriminate and classify the samples in the geographical-origin based classes. Summarized, the developed fingerprints and their metabolomics-based data handling successfully allowed geographical traceability evaluation of Moroccan Argan kernels.


Assuntos
Quimiometria , Sapotaceae , Cromatografia Líquida , Análise dos Mínimos Quadrados , Sapotaceae/química , Espectrometria de Massas em Tandem
5.
Drug Chem Toxicol ; 45(4): 1707-1715, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33412940

RESUMO

Copper (Cu) is a heavy metal with the ability to induce, at high levels, neurobehavioral alterations, and oxidative stress (OS). On the other hand, melatonin (Mel) is a neurohormone that protects neurons from OS and has a modulatory effect on several behavioral processes. The present experiment was aimed to examine the effect of Mel treatment on Cu-induced anxiety-like, depression-like behaviors, memory impairment, and OS in hippocampus. Herein, adult Wistar rats of both genders received daily Mel (4 mg/kg) thirty minutes before CuCl2 (1 mg/kg), by intraperitoneal injections for 8 weeks. After the administration period, all rats were submitted to the behavioral tests. Thereafter, OS parameters and histology of the hippocampus were evaluated. The results demonstrate that Mel treatment attenuated Cu-induced anxiety-like and depression-like behaviors, and it improved memory deficits Cu-treated rats. Furthermore, Mel attenuated Cu-provoked OS by reducing lipid peroxidation (LPO) and nitric oxide (NO) levels and enhancing superoxide dismutase (SOD) and catalase (CAT) activities in the hippocampus. The histopathological analysis also supported these results. In conclusion, these findings show that Mel treatment exerted neuroprotective effects against Cu-induced neurobehavioral changes which may be related to reduction of hippocampal OS. Besides, the effects of Cu and Mel were gender dependent, being more marked in females compared to male rats.


Assuntos
Ansiedade , Depressão , Melatonina , Animais , Antioxidantes/metabolismo , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Cobre/toxicidade , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Feminino , Hipocampo/metabolismo , Masculino , Melatonina/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
6.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681258

RESUMO

The opioid epidemic was triggered by an overprescription of opioid analgesics. In the treatment of chronic pain, repeated opioid administrations are required which ultimately lead to tolerance, physical dependence, and addiction. A possible way to overcome this conundrum consists of a co-medication that maintains the analgesic benefits of opioids while preventing their adverse liabilities. YHS, the extract of the plant Corydalis yanhusuo, has been used as analgesic in traditional Chinese medicine for centuries. More recently, it has been shown to promote analgesia in animal models of acute, inflammatory, and neuropathic pain. It acts, at least in part, by inhibiting the dopamine D2 receptor, suggesting that it may be advantageous to manage addiction. We first show that, in animals, YHS can increase the efficacy of morphine antinociceptive and, as such, decrease the need of the opioid. We then show that YHS, when coadministered with morphine, inhibits morphine tolerance, dependence, and addiction. Finally, we show that, in animals treated for several days with morphine, YHS can reverse morphine dependence and addiction. Together, these data indicate that YHS may be useful as a co-medication in morphine therapies to limit adverse morphine effects. Because YHS is readily available and safe, it may have an immediate positive impact to curb the opioid epidemic.

7.
Biomed Res Int ; 2021: 6695311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337045

RESUMO

Vitex agnus-castus is a medicinal plant of the Verbenaceae family, widely used in traditional medicine. This study is aimed at investigating the functional variability of phenolic compounds in different parts (leaves, stems, flowers, roots, and seeds) of Vitex agnus-castus methanolic extracts and at assessing their in vitro antidiabetic, antioxidant, and antibacterial activities. The results of HPLC-DAD-QTOF-MS indicated the presence of 25 phenolic compounds with a remarkable variability between plant parts; high levels were registered in chlorogenic, vanillic, 3,4-dihydroxybenzoic, and 3-hydroxybenzoic acids; hesperidin; and luteolin. V. agnus castus fruits and stems presented higher antioxidant activities. The extracts inhibited the growth of five pathogenic bacteria with MIC values documented between 7.81 and 31.25 mg/mL. In vitro antihyperglycemic effect revealed higher effect in flowers (2921.84 µg/mL) and seeds (2992.75 µg/mL) against α-glucosidase and of leaves (2156.80 µg/mL) and roots (2357.30 µg/mL) against α-amylase. The findings of this showed that V. agnus castus is a promising source for antidiabetic bioactive compounds. However, further investigations regarding the evaluation of in vivo antidiabetic effects of these compounds are needed.


Assuntos
Fenóis/análise , Fenóis/farmacologia , Vitex/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Flores/química , Hipoglicemiantes/farmacologia , Metanol/química , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Raízes de Plantas/química , Caules de Planta/química , Sementes/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-33790978

RESUMO

The protection of agricultural crops and the preservation of the organoleptic and health qualities of food products represent a major challenge for the agricultural and agro-food industries. Essential oils have received greater attention as alternatives to replace the control strategies based on pesticides against phytopathogenic bacteria and synthetic compounds in food preservation. The aims of this work were to study the chemical composition of Teucrium polium subsp. polium and Micromeria graeca essential oils and to examine their antioxidant and antimicrobial effects. To carry out this work, the chemical composition of the essential oil was determined using gas chromatography (GC) with the detection feature of mass spectrometry (MS). Subsequently, the antioxidant activity was investigated by DPPH and FRAPS assays. The antimicrobial effect was studied against phytopathogenic and foodborne pathogenic bacteria using the disc and the microdilution methods. Our results showed that GC-MS analysis of EOs allowed the identification of 30 compounds in T. polium EO (TPpEO), while 5 compounds were identified in M. graeca EO (MGEO). TPpEO had as major compounds ß-pinene (19.82%) and germacrene D (18.33%), while geranial (36.93%) and z-citral (18.25%) were the main components of MGEO. The most potent activity was obtained from MGEO (IC50 = 189.7 ± 2.62 µg/mL) compared to TPpEO (IC50 = 208.33 ± 3.51 µg/mL. For the FRAP test, the highest reducing power was obtained from 1.32 ± 0.1 mg AAE/g of TPpEO compared to MGEO 0.51 ± 0.13 mg AAE/g of EO. Both EOs exhibited varying degrees of antibacterial activities against all the tested strains with inhibition zones in the range of 9.33 ± 0.57 mm to >65 mm and MIC values from 0.19 to 12.5 mg/mL. However, MGEO exhibits an interesting anticandidal effect with inhibition zone 44.33 ± 0.57 mm. The findings of this research establish the riches of EOs on volatile compounds, their important antioxidant activity, and their antimicrobial effect against the bacteria tested.

9.
Phytother Res ; 35(7): 3590-3609, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666283

RESUMO

Plants of the genus Brassica occupy the top place among vegetables in the world. This genus, which contains a group of six related species of a global economic significance, three of which are diploid: Brassica nigra (L.) K. Koch, Brassica oleracea L., and Brassica rapa L. and three are amphidiploid species: Brassica carinata A. Braun, Brassica juncea (L.) Czern., and Brassica napus L. These varieties are divided into oily, fodder, spice, and vegetable based on their morphological structure, chemical composition, and usefulness of plant organs. The present review provides information about habitat, phytochemical composition, and the bioactive potential of Brassica plants, mainly antioxidant, antimicrobial, anticancer activities, and clinical studies in human. Brassica vegetables are of great economic importance around the world. At present, Brassica plants are grown together with cereals and form the basis of global food supplies. They are distinguished by high nutritional properties from other vegetable plants, such as low fat and protein content and high value of vitamins, fibers along with minerals. In addition, they possess several phenolic compounds and have a unique type of compounds namely glucosinolates that differentiate these crops from other vegetables. These compounds are also responsible for numerous biological activities to the genus Brassica as described in this review.


Assuntos
Brassica , Compostos Fitoquímicos , Verduras , Brassica/química , Glucosinolatos , Humanos , Compostos Fitoquímicos/farmacologia , Fitoterapia , Verduras/química
10.
Talanta ; 225: 122073, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592791

RESUMO

The characterization of Argan oils to classify them in three categories ('Extra Virgin', 'Virgin' and 'Lower quality') was evaluated. A total of 120 Moroccan Argan oils samples from the Taroudant Argan forest was investigated. The free acidity, peroxide value, spectrophotometric indices (K232 and K270), fatty acids, sterols, and tocopherol contents were assessed. The samples were also scanned by FTIR spectroscopy. The Principal Component Analysis (PCA) and four classification methods, Partial Least Squares Discriminant Analysis (PLS-DA), Soft Independent Modelling of Class Analogy (SIMCA), K-nearest Neighbors (KNN), and Support Vector Machines (SVM), were applied on both the chemical and spectral data. Besides the conventional chemical profiling, FTIR spectra were evaluated for their feasibility as a rapid non-invasive approach for classifying and predicting the oil quality categories. The most important variables for differentiating the oil categories were identified as K232, peroxide value, É£-tocopherol, δ-tocopherol, acidity, stigma-8-22-dien-3ß-ol, stearic acid (C18:0) and linoleic acid (C18:2) and could be used as quality indicators. Eight chemical descriptors or key features from the FTIR spectra (selected by interval-PLS) could also be established as indicators of quality and freshness of Argan oils.

11.
Neuropharmacology ; 184: 108423, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33290754

RESUMO

Oxytocin regulates social behaviors and has been linked to the etiology of autism and schizophrenia. Oxytocin and another hypothalamic neuropeptide, melanin concentrating hormone (MCH), share several physiological actions such as emotion, social behavior and recognition, maternal care, sexual behavior and stress, which suggests that these two systems may interact, however, how they would do it is not known. Here, we study the interactions between the oxytocin and MCH systems in behaviors related to autism and schizophrenia. Specifically, we examined the synaptic inputs of the oxytocin-to the MCH neurons. We selectively deleted oxytocin receptors (OXTR) from MCH neurons (OXTR-cKO mice) using a Cre/loxP recombinase-technology, and used rabies-mediated circuit mapping technique to reveal the changes in the direct monosynaptic inputs to MCH neurons. We examined the behavioral responses of OXTR-cKO mice. Deletion of OXTR from MCH neurons induced a significant decrease in the primary inputs received by MCH neurons from the paraventricular nucleus and the lateral hypothalamus, and from the nucleus accumbens and ventral tegmental area. While OXTR-cKO mice exhibited similar social interactions as control mice, they displayed significantly impaired social recognition memory and increased stereotypic behavior. Our study identifies a selective role for the oxytocin-MCH pathway in social recognition memory and stereotyped behavior that are relevant to psychiatric disorders such as schizophrenia and autism, and warrant further investigation of this circuit to uncover potential benefit of targeting the oxytocin-MCH circuit as a novel therapeutic target for treatment of social recognition deficits in these two disorders.


Assuntos
Hormônios Hipotalâmicos/deficiência , Melaninas/deficiência , Neurônios/metabolismo , Hormônios Hipofisários/deficiência , Receptores de Ocitocina/deficiência , Reconhecimento Psicológico/fisiologia , Interação Social , Sinapses/metabolismo , Animais , Hormônios Hipotalâmicos/genética , Masculino , Melaninas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ocitocina/deficiência , Ocitocina/genética , Hormônios Hipofisários/genética , Receptores de Ocitocina/genética , Sinapses/genética
12.
J Ethnopharmacol ; 265: 113303, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32877720

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Silybum marianum (L.) Gaertn. or Milk thistle is a medicinal plant native to Northern Africa, Southern Europe, Southern Russia and Anatolia. It also grows in South Australia, North and South America. In traditional knowledge, people have used S. marianum for liver disorders such as hepatitis, liver cirrhosis and gallbladder diseases. The main active compound of the plant seeds is silymarin, which is the most commonly used herbal supplement in the United States for liver problems. Nowadays, S. marianum products are available as capsules, powders, and extracts. AIM OF STUDY: The aim of our study is to draw a more comprehensive overview of the traditional heritage, pharmacological benefits and chemical fingerprint of S. marianum extracts and metabolites; as well as their metabolism and bioavailability. MATERIALS AND METHODS: An extensive literature search has been conducted using relavant keywords and papers with rationale methodology and robust data were selected and discussed. Studies involving S. marianum or its main active ingredients with regards to hepatoprotective, antidiabetic, cardiovascular protection, anticancer and antimicrobial activities as well as the clinical trials performed on the plant, were discussed here. RESULTS: S. marianum was subjected to thousands of ethnopharmacological, experimental and clinical investigations. Although, the plant is available for use as a dietary supplement, the FDA did not yet approve its use for cancer therapy. Nowadays, clinical investigations are in progress where a global evidence of its real efficiency is needed. CONCLUSION: S. marianum is a worldwide used herb with unlimited number of investigations focusing on its benefits and properties, however, little is known about its clinical efficiency. Moreover, few studies have discussed its metabolism, pharmacokinetics and bioavailability, so that all future studies on S. marianum should focus on such areas.


Assuntos
Extratos Vegetais/farmacologia , Silybum marianum/química , Silimarina/farmacologia , Animais , Suplementos Nutricionais , Etnofarmacologia , Humanos , Medicina Tradicional , Sementes , Silimarina/isolamento & purificação
13.
Toxicol Res ; 36(4): 359-366, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005595

RESUMO

Environmental and occupational exposures to copper (Cu) play a pivotal role in the etiology of some neurological diseases and reduced cognitive functions. However, the precise mechanisms of its effects on cognitive function have not been yet thoroughly established. In our study, we aimed to investigate the behavior and neurochemical alterations in hippocampus of male and female rats, chronically exposed to copper chloride (CuCl2) and the possible involvement of oxidative stress. Twenty-four rats, for each gender, were divided into control and three test groups (n = 6), and were injected intraperitoneally with saline (0.9% NaCl) or CuCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After the treatment period, Y-maze test was used for the evaluation of spatial working memory and the Morris Water Maze (MWM) to test the spatial learning and memory. Biochemical determination of oxidative stress levels in hippocampus was performed. The main results of the present work are working memory impairment in spatial Y-maze which induced by higher Cu intake (1 mg/kg) in male and female rats. Also, In the MWM test, the spatial learning and memory were significantly impaired in rats treated with Cu at dose of 1 mg/kg. Additionally, markers of oxidative stress such as catalase, superoxide dismutase, lipid peroxidation products and nitric oxide levels were significantly altered following Cu treatments. These data propose that compromised behavior following Cu exposure is associated with increase in oxidative stress.

14.
Adv Pharmacol Pharm Sci ; 2020: 8852570, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954350

RESUMO

Foeniculum vulgare is a medicinal plant used in Moroccan folk medicine to treat several diseases such as diabetes. The aim of this study was to determine the phenolic bioactive compounds and to evaluate the antioxidant and antihyperglycemic activities of Foeniculum vulgare leaf and rootstock extracts. Phenolic compounds of F. vulgare rootstock and leaf extracts were determined using HPLC-DAD-QTOFMS analysis. The antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radicals. Moreover, the in vitro antihyperglycemic effects were tested by measuring the inhibition of α-amylase and α-glucosidase activities. HPLC-DAD-QTOFMS analysis identified thirty-two phenolic components in both leaf and rootstock extracts. Caffeic acid, quinic acid, and chlorogenic acid were the major compounds of F. vulgare leaf extract (FVLE), while the main compound of F. vulgare rootstock extracts (FVRE) was quinic acid. In the DPPH assay, F. vulgare leaf extract showed important antioxidant activity (IC50 = 12.16 ± 0.02 µg/mL) than F. vulgare rootstock extract (IC50 = 34.36 ± 0.09 µg/mL). Moreover, fennel leaf extracts revealed also the most powerful antioxidant activity (IC50 = 22.95 ± 0.4 µg/mL) in the ABTS assay. The in vitro antihyperglycemic activity showed that F. vulgare rootstock extract exhibited a remarkable inhibitory capacity (IC50 = 194.30 ± 4.8 µg/mL) of α-amylase compared with F. vulgare leaf extract (IC50 = 1026.50 ± 6.5 µg/mL). Furthermore, the inhibition of α-glucosidase was more importantly with F. vulgare rootstock (IC50 of 165.90 ± 1.2 µg/mL) than F. vulgare leaf extracts (203.80 ± 1.3 µg/mL). The funding of this study showed that F. vulgare rootstock and leaf extracts presented several phenolic compounds and showed important antioxidant and antidiabetic effects. We suggest that the identified molecules are responsible for the obtained activities. However, further studies focusing on the isolation and the determination of antioxidant and antidiabetic effects of F. vulgare rootstock and leaf main compounds are required.

15.
Foods ; 9(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455872

RESUMO

In order to discover new natural resources with biological properties, the chemical composition, the antioxidant and antimicrobial activities, and the potential use as food preservative of essential oils of Moroccan Achillea odorata subsp. pectinata (AOpEO) and Ruta montana (RMEO) were studied. Gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of 21 and 25 compounds in AOpEO and RMEO, respectively. The results showed that the major compounds of AOpEO are camphor (45.01%), bornyl acetate (15.07%), borneol (11.33%), ß-eudesmol (4.74%), camphene (3.58%), and 1.8-cineole (eucalyptol) (2.96%), whereas 2-undecanone (63.97%), camphor (3.82%) and cyclopropanecarboxylic acid (3.66%) were the main components of RMEO. The antioxidant activities were evaluated by diphenylpicrylhydraziyl radical (DPPH) and reducing power assays. The antimicrobial activities of essential oils were tested against bacterial strains and food contaminant yeast using agar disc diffusion and microdilution methods. A significant antimicrobial activity of AOpEO was observed against Bacillus subtilis, Proteus mirabilis and Candida albicans, compared to RMEO. The efficacy of AOpEO was also evaluated in model food systems (cabbage and barley) artificially inoculated during storage. The results found that the adding of a minimal inhibitory concentration (MIC) and 4× MIC were potent in decreasing the Proteus mirabilis growth in food model systems. Our findings suggested that AOpEO may be potentially used as an alternative food preservative.

16.
J Pharm Biomed Anal ; 177: 112849, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31499429

RESUMO

Herbal extracts and essential oils have been used over the centuries for their dietary, cosmetic and therapeutic properties. Quality control is needed to guarantee the safety and quality of these consumables. In this regard, fingerprinting techniques are important for inspection of the authenticity and for quality control. Analytical fingerprinting techniques provide signals related to the composition of a matrix (oil, plant extract, food…). The resulting fingerprint (spectrum or chromatogram) obtained for an untargeted or targeted approach is coupled to chemometric data processing, which may allow, for instance, the desired identification or discrimination of the sample considered. In this context, recent advances in untargeted/targeted fingerprinting approaches (especially chromatographic and spectroscopic) were described and their application in the taxonomic identification, classification and authentication of plants (medicinal) and essential oils discussed. An overview of the applications of untargeted/targeted fingerprinting techniques on herbal-extracts and essential-oils analysis, using different chemometric tools, has been included.


Assuntos
Técnicas de Química Analítica/métodos , Óleos Voláteis/análise , Extratos Vegetais/análise , Plantas Medicinais/química , Controle de Qualidade , Geografia , Metabolômica/métodos , Óleos Voláteis/química , Extratos Vegetais/química , Plantas Medicinais/classificação
17.
Biomed Res Int ; 2019: 4568039, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781615

RESUMO

Chemical structures derived from marine foods are highly diverse and pharmacologically promising. In particular, chitooligosaccharides (COS) present a safe pharmacokinetic profile and a great source of new bioactive polymers. This review describes the antioxidant, anti-inflammatory, and antidiabetic properties of COS from recent publications. Thus, COS constitute an effective agent against oxidative stress, cellular damage, and inflammatory pathogenesis. The mechanisms of action and targeted therapeutic pathways of COS are summarized and discussed. COS may act as antioxidants via their radical scavenging activity and by decreasing oxidative stress markers. The mechanism of COS antidiabetic effect is characterized by an acceleration of pancreatic islets proliferation, an increase in insulin secretion and sensitivity, a reduction of postprandial glucose, and an improvement of glucose uptake. COS upregulate the GLUT2 and inhibit digestive enzyme and glucose transporters. Furthermore, they resulted in reduction of gluconeogenesis and promotion of glucose conversion. On the other hand, the COS decrease inflammatory mediators, suppress the activation of NF-κB, increase the phosphorylation of kinase, and stimulate the proliferation of lymphocytes. Overall, this review brings evidence from experimental data about protective effect of COS.


Assuntos
Anti-Inflamatórios , Quitina/análogos & derivados , Sequestradores de Radicais Livres , Hipoglicemiantes , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Quitina/farmacocinética , Quitina/uso terapêutico , Quitosana , Sequestradores de Radicais Livres/farmacocinética , Sequestradores de Radicais Livres/uso terapêutico , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/uso terapêutico , Oligossacarídeos
18.
Bioorg Chem ; 92: 103193, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445196

RESUMO

A ring transformation of 6-methyl-7H[1,2,4]triazolo [4,3-b][1,2,4] triazepine-8(9H)-ones (thiones) in the presence of acetic anhydride give rise to a new series of 17 condensed 1,2,4-triazole derivatives (1-17). Plausible mechanisms are proposed and show the formation of a beta fused ß-lactam moiety. The compounds were tested for their (i) inhibitory potential on digestive enzymes (α-amylase and α-glucosidase), and (ii) antioxidant activity using radical scavenging (DPPH and ABTS radicals) and ferric reducing power assays. The compounds showed interesting and promising antidiabetic activities compared to the reference drug Acarbose. Molecular docking study has been carried out to determine the binding mode interactions between these derivatives and the targeted enzymes. The results showed the strength of intermolecular hydrogen bonding in ligand-receptor complexes as an important descriptor in rationalizing the observed inhibition results. Moreover, molecular dynamics simulations are also performed for the best protein-ligand complex to understand the stability of small molecule in a protein environment. To shed light on the antioxidant activity of the synthesized compounds and the mechanism involved in DPPH free radical, DFT calculations were performed at the B3P86/6-311++G(d,p) level using the polarizable continuum model. The effect of aprotic solvent on bond dissociation enthalpies (BDEs) is investigated by calculating and comparing BDEs of 1 in methanol and dimethylsulfoxide as solvents using PCM. The obtained results show that the mechanism of action depends on the basic skeleton and the presence of substituted functional groups in these derivatives. BDEs are found to be slightly influenced by the aprotic solvent of less than 0.01 kcal/mol compared with those obtained in methanol.


Assuntos
Antioxidantes/síntese química , Hipoglicemiantes/síntese química , Triazóis/síntese química , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Antioxidantes/farmacologia , Teoria da Densidade Funcional , Dimetil Sulfóxido/química , Avaliação Pré-Clínica de Medicamentos , Radicais Livres/química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Solventes/química , Relação Estrutura-Atividade , Termodinâmica , Triazóis/farmacologia
19.
Rev. bras. farmacogn ; 28(5): 575-581, Sept.-Oct. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-977733

RESUMO

Abstract Echinoderms have attracted the attention of scientists over the past few years after identifying a variety of unique structures endowed by interesting biological properties. However, the Moroccan coast biodiversity is still uninvestigated. In our ongoing attempts to valorize the rich Moroccan marine environment, this study aimed at assessing the antimicrobial activity of extracts obtained from three echinoderms Astropecten irregularis, Luidia sarsi and Ophiura albida against the human pathogens: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica and Bacillus subtilis. Moreover, their antioxidant activities were tested using standard methods in addition to the antidiabetic activity which has been evaluated in vitro against α-amylase and α-glucosidase enzymes. HPLC-DAD-QTOF-MS analysis revealed a significant content of some phenolic compounds such as pyrogallol, gallic, sinapic, ferulic, p-hydroxybenzoic and salicylic acids whose existence can be related to the endophytic fungi and/or dietary intake whereas GC-MS analysis exhibited diverse chemical structures such as cholesterol, oleic acid and glycerol 1-palmitate.

20.
Brain Sci ; 8(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065183

RESUMO

Nickel (Ni) toxicity has been reported to produce biochemical and behavioral dysfunction. The present study was undertaken to examine whether Ni chronic administration can induce alterations of affective and cognitive behavior and oxidative stress in male and female rats. Twenty-four rats, for each gender, divided into control and three test groups (n = 6), were injected intraperitoneally with saline (0.9% NaCl) or NiCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After treatment period, animals were tested in the open-field, elevated plus maze tests for anxiety-like behavior, and forced swimming test for depression-like behavior. The Morris Water Maze was used to evaluate the spatial learning and memory. The hippocampus of each animal was taken for biochemical examination. The results showed that Ni administration dose dependently increased anxiety-like behavior in both tests. A significant increase in depression-like symptoms was also exhibited by Ni treated rats. In the Morris Water Maze test, the spatial learning and memory were significantly impaired just in males treated with 1 mg/kg of Ni. With regard to biochemical analysis, activity of catalase (CAT) and superoxide dismutase (SOD) were significantly decreased, while the levels of nitric oxide (NO) and lipid peroxidation (LPO) in the hippocampus were significantly increased in the Ni-treated groups. Consequently, chronic Ni administration induced behavioral and biochemical dysfunctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...