Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Medica Philippina ; : 53-60, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1003634

RESUMO

Background and Objective@#Staphylococcus aureus is the leading cause of skin and soft tissue infections such as abscesses, furuncles, and cellulitis. Biofilm forming strains of S. aureus have higher incidence of antimicrobial resistance to at least three or more antibiotics and are considered as multidrug resistant. Since S. aureus biofilm-producing strains have higher rates of multidrug and methicillin resistance compared to non-biofilm-producing strains, the need for alternative therapeutic option is important. Furthermore, rates of methicillin-resistant Staphylococcus aureus (MRSA) in Asia remain high. Results of the study may provide support for the clinical uses of P. betle as a topical antibacterial and antiseptic in the treatment and prevention of infections involving the skin, mouth, throat, and indwelling medical devices. Thus, this study aimed to evaluate the in vitro antibacterial and antibiofilm activities of Piper betle L. ethanolic leaf extract (PBE) against a biofilm-forming methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA).@*Methods@#The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PBE against MSSA were determined using the agar dilution assay. The biofilm inhibition and eradication assays using crystal violet were done to quantify the antibiofilm activities of PBE on MSSA biofilm.@*Results@#PBE showed activity against MSSA in agar dilution assay with MIC and MBC values of 2500 μg/mL and 5000 μg/mL, respectively. At subinhibitory concentrations, PBE showed biofilm inhibition activity at 1250 μg/mL but a lower percent eradication of biofilms as compared to oxacillin was noted.@*Conclusion@#PBE showed antibacterial activities including biofilm inhibition against methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA).


Assuntos
Piper betle , Staphylococcus aureus , Antibacterianos , Biofilmes
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-430728

RESUMO

Mouthwashes are used to decrease oral cavity microbial load due to their antiseptic properties. Hexetidine is a broad-spectrum antiseptic used for minor infections of mucous membranes, and in particular as a 0.1% mouthwash for local infections and oral hygiene. This study determined the anti-viral activity of the mouthwash hexetidine (Bactidol(R)), specifically in reducing viral concentration of Human Coronavirus OC43 (HCoV OC43; ATCC(R) VR-1558) and Influenza A virus (IAV H1N1; clinical strain) in Vero 6 and MDCK cell cultures respectively, using in-vitro suspension assay (ASTM E-1052-11) designed to evaluate virucidal property of microbicides like hexetidine. Study results indicated that hexetidine was able to reduce infectivity of HCoV OC43 and IAV H1N1 at 25%, 50% and 100% concentrations by more than 80% at 15- and 30-seconds exposure times. One hundred percent (100%) concentration of hexetidine was found to be cytotoxic to MDCK cell line used for IAV H1N1 propagation. Hexetidine-treated cell lines achieved >80% survival rate for MDCK and Vero E6 at a contact time of 15 seconds and 30 seconds (which are the approximate times of gargling with hexetidine mouthwash). The anti-viral activity of hexetidine mouthwash against other more virulent or pathogenic coronaviruses like SARS-CoV-2 can be explored further.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-980154

RESUMO

Background and Objective@#Staphylococcus aureus is the leading cause of skin and soft tissue infections such as abscesses, furuncles, and cellulitis. Biofilm forming strains of S. aureus have higher incidence of antimicrobial resistance to at least three or more antibiotics and are considered as multidrug resistant. Since S. aureus biofilm-producing strains have higher rates of multidrug and methicillin resistance compared to non-biofilm-producing strains, the need for alternative therapeutic option is important. Furthermore, rates of methicillin-resistant Staphylococcus aureus (MRSA) in Asia remain high. Results of the study may provide support for the clinical uses of P. betle as a topical antibacterial and antiseptic in the treatment and prevention of infections involving the skin, mouth, throat, and indwelling medical devices. Thus, this study aimed to evaluate the in vitro antibacterial and antibiofilm activities of Piper betle L. ethanolic leaf extract (PBE) against a biofilm-forming methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA).@*Methods@#The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PBE against MSSA were determined using the agar dilution assay. The biofilm inhibition and eradication assays using crystal violet were done to quantify the antibiofilm activities of PBE on MSSA biofilm. @*Results@#PBE showed activity against MSSA in agar dilution assay with MIC and MBC values of 2500 μg/mL and 5000 μg/mL, respectively. At subinhibitory concentrations, PBE showed biofilm inhibition activity at 1250 μg/mL but a lower percent eradication of biofilms as compared to oxacillin was noted. @*Conclusion@#PBE showed antibacterial activities including biofilm inhibition against methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA).


Assuntos
Piper betle , Staphylococcus aureus , Antibacterianos , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...