Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 8632, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451393

RESUMO

Pain evoked by visceral inflammation is often 'referred' to the somatic level. Transient receptor potential ankyrin 1 (TRPA1) has been reported to contribute to visceral pain-like behavior in dextran sulfate sodium (DSS)-evoked colitis. However, the role of TRPA1 in somatic component of hypersensitivity due to visceral inflammation is unknown. The present study investigated the role of TRPA1 in colitis-evoked mechanical hypersensitivity at the somatic level. Colitis was induced in mice by adding DSS to drinking water for one week. Control and DSS-treated mice were tested for various parameters of colitis as well as mechanical pain sensitivity in abdominal and facial regions. DSS treatment caused mechanical hypersensitivity in the abdominal and facial skin. Pharmacological blockade or genetic deletion of TRPA1 prevented the colitis-associated mechanical hypersensitivity in the abdominal and facial skin areas although the severity of colitis remained unaltered. DSS treatment increased expression of TRPA1 mRNA in cultured dorsal root ganglion (DRG) neurons, but not trigeminal ganglion neurons, and selectively enhanced currents evoked by the TRPA1 agonist, allyl isothiocyanate, in cultured DRG neurons. Our findings indicate that the TRPA1 channel contributes to colitis-associated mechanical hypersensitivity in somatic tissues, an effect associated with upregulation of TRPA1 expression and responsiveness in DRG nociceptors.


Assuntos
Colite/patologia , Dor Nociceptiva/patologia , Canal de Cátion TRPA1/metabolismo , Acetanilidas/farmacologia , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Potenciais Evocados/efeitos dos fármacos , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Isotiocianatos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Purinas/farmacologia , Estresse Mecânico , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/genética , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo
2.
J Cell Mol Med ; 23(3): 1976-1986, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30636360

RESUMO

Safranal, contained in Crocus sativus L., exerts anti-inflammatory and analgesic effects. However, the underlying mechanisms for such effects are poorly understood. We explored whether safranal targets the transient receptor potential ankyrin 1 (TRPA1) channel, which in nociceptors mediates pain signals. Safranal by binding to specific cysteine/lysine residues, stimulates TRPA1, but not the TRP vanilloid 1 and 4 channels (TRPV1 and TRPV4), evoking calcium responses and currents in human cells and rat and mouse dorsal root ganglion (DRG) neurons. Genetic deletion or pharmacological blockade of TRPA1 attenuated safranal-evoked release of calcitonin gene-related peptide (CGRP) from rat and mouse dorsal spinal cord, and acute nociception in mice. Safranal contracted rat urinary bladder isolated strips in a TRPA1-dependent manner, behaving as a partial agonist. After exposure to safranal the ability of allyl isothiocyanate (TRPA1 agonist), but not that of capsaicin (TRPV1 agonist) or GSK1016790A (TRPV4 agonist), to evoke currents in DRG neurons, contraction of urinary bladder strips and CGRP release from spinal cord slices in rats, and acute nociception in mice underwent desensitization. As previously shown for other herbal extracts, including petasites or parthenolide, safranal might exert analgesic properties by partial agonism and selective desensitization of the TRPA1 channel.


Assuntos
Analgésicos/farmacologia , Crocus/química , Cicloexenos/farmacologia , Nociceptividade/efeitos dos fármacos , Canal de Cátion TRPA1/metabolismo , Terpenos/farmacologia , Animais , Canais de Cálcio/metabolismo , Linhagem Celular , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Isotiocianatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Sesquiterpenos/farmacologia , Canais de Cátion TRPV/metabolismo
3.
Nat Commun ; 8(1): 1887, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29192190

RESUMO

It is known that transient receptor potential ankyrin 1 (TRPA1) channels, expressed by nociceptors, contribute to neuropathic pain. Here we show that TRPA1 is also expressed in Schwann cells. We found that in mice with partial sciatic nerve ligation, TRPA1 silencing in nociceptors attenuated mechanical allodynia, without affecting macrophage infiltration and oxidative stress, whereas TRPA1 silencing in Schwann cells reduced both allodynia and neuroinflammation. Activation of Schwann cell TRPA1 evoked NADPH oxidase 1 (NOX1)-dependent H2O2 release, and silencing or blocking Schwann cell NOX1 attenuated nerve injury-induced macrophage infiltration, oxidative stress and allodynia. Furthermore, the NOX2-dependent oxidative burst, produced by macrophages recruited to the perineural space activated the TRPA1-NOX1 pathway in Schwann cells, but not TRPA1 in nociceptors. Schwann cell TRPA1 generates a spatially constrained gradient of oxidative stress, which maintains macrophage infiltration to the injured nerve, and sends paracrine signals to activate TRPA1 of ensheathed nociceptors to sustain mechanical allodynia.


Assuntos
Macrófagos/imunologia , Neuralgia/imunologia , Células de Schwann/imunologia , Canal de Cátion TRPA1/imunologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 1/genética , NADPH Oxidase 1/imunologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/imunologia , Neuralgia/genética , Estresse Oxidativo , Nervo Isquiático/imunologia , Canal de Cátion TRPA1/genética
4.
Br J Pharmacol ; 174(1): 57-69, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27759880

RESUMO

BACKGROUND AND PURPOSE: Peptides from venomous animals have long been important for understanding pain mechanisms and for the discovery of pain treatments. Here, we hypothesized that Phα1ß, a peptide from the venom of the armed spider Phoneutria nigriventer, produces analgesia by blocking the TRPA1 channel. EXPERIMENTAL APPROACH: Cultured rat dorsal root ganglion (DRG) neurons, human fetal lung fibroblasts (IMR90) or HEK293 cells expressing the human TRPA1 (hTRPA1-HEK293), human TRPV1 (hTRPV1-HEK293) or human TRPV4 channels (hTRPV4-HEK293), were used for calcium imaging and electrophysiology. Nociceptive responses induced by TRPA1, TRPV1 or TRPV4 agonists or by bortezomib were investigated in mice. KEY RESULTS: Phα1ß selectively inhibited calcium responses and currents evoked by the TRPA1 agonist, allyl isothiocyanate (AITC), on hTRPA1-HEK293, IMR90 fibroblasts and DRG neurons. Phα1ß did not affect calcium responses evoked by selective TRPV1 (capsaicin) or TRPV4 (GSK 1016790A) agonists on the various cell types. Intrathecal (i.t.) and intraplantar (i.pl.) administration of low doses of Phα1ß (up to 300 pmol per paw) attenuated acute nociception and mechanical and cold hyperalgesia evoked by AITC (i.t. or i.pl.), without affecting responses produced by capsaicin or hypotonic solution. Notably, Phα1ß abated the TRPA1-dependent neuropathic pain-like responses induced by bortezomib. In vitro and in vivo inhibition of TRPA1 by Phα1ß was reproduced by a recombinant form of the peptide, CTK 01512-2. CONCLUSIONS AND IMPLICATIONS: Phα1ß and CTK 01512-2 selectively target TRPA1, but not other TRP channels. This specific action underlines the potential of Phα1ß and CTK 01512-2 for pain treatment.


Assuntos
Analgésicos/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Nociceptividade/efeitos dos fármacos , Venenos de Aranha/química , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Analgésicos/química , Animais , Canais de Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/tratamento farmacológico , Neurônios/efeitos dos fármacos , Ratos , Venenos de Aranha/farmacologia , Aranhas , Relação Estrutura-Atividade , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/metabolismo
5.
Cancer Res ; 76(23): 7024-7035, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27758889

RESUMO

Aromatase inhibitors (AI) induce painful musculoskeletal symptoms (AIMSS), which are dependent upon the pain transducing receptor TRPA1. However, as the AI concentrations required to engage TRPA1 in mice are higher than those found in the plasma of patients, we hypothesized that additional factors may cooperate to induce AIMSS. Here we report that the aromatase substrate androstenedione, unique among several steroid hormones, targeted TRPA1 in peptidergic primary sensory neurons in rodent and human cells expressing the native or recombinant channel. Androstenedione dramatically lowered the concentration of letrozole required to engage TRPA1. Notably, addition of a minimal dose of androstenedione to physiologically ineffective doses of letrozole and oxidative stress byproducts produces AIMSS-like behaviors and neurogenic inflammatory responses in mice. Elevated androstenedione levels cooperated with low letrozole concentrations and inflammatory mediators were sufficient to provoke AIMSS-like behaviors. The generation of such painful conditions by small quantities of simultaneously administered TRPA1 agonists justifies previous failure to identify a precise link between AIs and AIMSS, underscoring the potential of channel antagonists to treat AIMSS. Cancer Res; 76(23); 7024-35. ©2016 AACR.


Assuntos
Androstenodiona/efeitos adversos , Inibidores da Aromatase/efeitos adversos , Canais de Potencial de Receptor Transitório/química , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Transfecção
6.
Free Radic Biol Med ; 89: 972-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26476010

RESUMO

The analysis of the global thiol-disulfide redox status in tissues and cells is a challenging task since thiols and disulfides can undergo artificial oxido-reductions during sample manipulation. Because of this, the measured values, in particular for disulfides, can have a significant bias. Whereas this methodological problem has already been addressed in samples of red blood cells and solid tissues, a reliable method to measure thiols and disulfides in cell cultures has not been previously reported. Here, we demonstrate that the major artifact occurring during thiol and disulfide analysis in cultured cells is represented by glutathione disulfide (GSSG) and S-glutathionylated proteins (PSSG) overestimation, due to artificial oxidation of glutathione (GSH) during sample manipulation, and that this methodological problem can be solved by the addition of N-ethylmaleimide (NEM) immediately after culture medium removal. Basal levels of GSSG and PSSG in different lines of cultured cells were 3-5 and 10-20 folds higher, respectively, when the cells were processed without NEM. NEM pre-treatment also prevented the artificial reduction of disulfides that occurs during the pre-analytical phase when cells are exposed to an oxidant stimulus. In fact, in the absence of NEM, after medium removal, GSH, GSSG and PSSG levels restored their initial values within 15-30 min, due to the activity of reductases and the lack of the oxidant. The newly developed protocol was used to measure the thiol-disulfide redox status in 16 different line cells routinely used for biomedical research both under basal conditions and after treatment with disulfiram, a thiol-specific oxidant (0-200 µM concentration range). Our data indicate that, in most cell lines, treatment with disulfiram affected the levels of GSH and GSSG only at the highest concentration. On the other hand, PSSG levels increased significantly also at the lower concentrations of the drug, and the rise was remarkable (from 100 to 1000 folds at 200 µM concentration) and dose-dependent for almost all the cell lines. These data support the suitability of the analysis of PSSG in cultured cells as a biomarker of oxidative stress.


Assuntos
Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Bovinos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Etilmaleimida/farmacologia , Humanos , Oxirredução , Proteínas/química
7.
Br J Pharmacol ; 172(13): 3397-411, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25765567

RESUMO

BACKGROUND AND PURPOSE: Although still used by hundreds of millions of people worldwide, the mechanism of the analgesic action of the pyrazolone derivatives (PDs), dipyrone, propyphenazone and antipyrine remains unknown. The transient receptor potential ankyrin 1 (TRPA1) channel, expressed by nociceptors, is emerging as a major pain transduction pathway. We hypothesized that PDs target the TRPA1 channel and by this mechanism produce their analgesic effect. EXPERIMENTAL APPROACH: Calcium responses and currents were studied in cultured TRPA1-expressing rodent dorsal root ganglion neurons and human cells. Acute nociception and mechanical hypersensitivity were investigated in naïve and genetically manipulated mice. KEY RESULTS: Pyrazolone and PDs selectively inhibited calcium responses and currents in TRPA1-expressing cells and acute nocifensor responses in mice evoked by reactive channel agonists (allyl isothiocyanate, acrolein and H2 O2 ). In line with recent results obtained with TRPA1 antagonists and TRPA1 gene deletion, the two most largely used PDs, dipyrone and propyphenazone, attenuated TRPA1-mediated nociception and mechanical allodynia in models of inflammatory and neuropathic pain (formalin, carrageenan, partial sciatic nerve ligation and the chemotherapeutic drug, bortezomib). Notably, dipyrone and propyphenazone attenuated carrageenan-evoked mechanical allodynia, without affecting PGE2 levels. The main metabolites of PDs did not target TRPA1 and did not affect TRPA1-dependent nociception and allodynia. CONCLUSIONS AND IMPLICATIONS: Evidence that in rodents the nociceptive/hyperalgesic effect produced by TRPA1 activation is blocked by PDs suggests that a similar pathway is attenuated by PDs in humans and that TRPA1 antagonists could be novel analgesics, devoid of the adverse haematological effects of PDs.


Assuntos
Canais de Cálcio/metabolismo , Hiperalgesia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nociceptividade/fisiologia , Dor/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Dipirona/farmacologia , Dipirona/uso terapêutico , Células HEK293 , Humanos , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Nociceptividade/efeitos dos fármacos , Dor/tratamento farmacológico , Pirazolonas/farmacologia , Pirazolonas/uso terapêutico , Ratos Sprague-Dawley , Canal de Cátion TRPA1
8.
Nat Commun ; 5: 5736, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25484020

RESUMO

Use of aromatase inhibitors (AIs), exemestane, letrozole and anastrozole, for breast cancer therapy is associated with severe pain symptoms, the underlying mechanism of which is unknown. The electrophilic nature of AIs suggests that they may target the transient receptor potential ankyrin 1 (TRPA1) channel, a major pathway in pain transmission and neurogenic inflammation. AIs evoke TRPA1-mediated calcium response and current in rodent nociceptors and human cells expressing the recombinant channel. In mice, AIs produce acute nociception, which is exaggerated by pre-exposure to proalgesic stimuli, and, by releasing sensory neuropeptides, neurogenic inflammation in peripheral tissues. AIs also evoke mechanical allodynia and decreased grip strength, which do not undergo desensitization on prolonged AI administration. These effects are markedly attenuated by TRPA1 pharmacological blockade or in TRPA1-deficient mice. TRPA1 is a major mediator of the proinflammatory/proalgesic actions of AIs, thus suggesting TRPA1 antagonists for the treatment of pain symptoms associated with AI use.


Assuntos
Inibidores da Aromatase/química , Canais de Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Dor/induzido quimicamente , Esteroides/química , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Anastrozol , Androstadienos/química , Animais , Comportamento Animal , Cálcio/química , Cisteína/química , Células HEK293 , Humanos , Inflamação , Letrozol , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/química , Nitrilas/química , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...