Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 192(2): 395-404, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216968

RESUMO

Hereditary persistence of fetal haemoglobin (HPFH) is the major modifier of the clinical severity of ß-thalassaemia. The homozygous mutation c.-196 C>T in the Aγ-globin (HBG1) promoter, which causes Sardinian δß0 -thalassaemia, is able to completely rescue the ß-major thalassaemia phenotype caused by the ß0 39-thalassaemia mutation, ensuring high levels of fetal haemoglobin synthesis during adulthood. Here, we describe a CRISPR/Cas9 genome-editing approach, combined with the non-homologous end joining (NHEJ) pathway repair, aimed at reproducing the effects of this naturally occurring HPFH mutation in both HBG promoters. After selecting the most efficient guide RNA in K562 cells, we edited the HBG promoters in human umbilical cord blood-derived erythroid progenitor 2 cells (HUDEP-2) and in haematopoietic stem and progenitor cells (HSPCs) from ß0 -thalassaemia patients to assess the therapeutic potential of HbF induction. Our results indicate that small deletions targeting the -196-promoter region restore high levels of fetal haemoglobin (HbF) synthesis in all cell types tested. In pools of HSPCs derived from homozygous ß0 39-thalassaemia patients, a 20% editing determined a parallel 20% increase of HbF compared to unedited pools. These results suggest that editing the region of HBG promoters around the -196 position has the potential to induce therapeutic levels of HbF in patients with most types of ß-thalassaemia irrespective of the ß-globin gene (HBB) mutations.


Assuntos
Hemoglobina Fetal/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Talassemia beta/genética , Sistemas CRISPR-Cas , Células Cultivadas , Células HEK293 , Humanos , Células K562 , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...