Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 3963-3973, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305745

RESUMO

One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.

2.
Angew Chem Int Ed Engl ; 58(44): 15788-15792, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31512362

RESUMO

Supramolecular polymers show great potential in the development of new materials because of their inherent recyclability and their self-healing and stimuli-responsive properties. Supramolecular conductive polymers are generally obtained by the assembly of individual aromatic molecules into columnar arrays that provide an optimal channel for electronic transport. A new approach is reported to prepare supramolecular polymers by hooking together sigmoidal monomers into 1D arrays of π-stacked anthracene and acridine units, which gives rise to micrometer-sized fibrils that show pseudoconductivities in line with other conducting materials. This approach paves the way for the design of new supramolecular polymers constituted by acene derivatives with enhanced excitonic and electronic transporting properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...