Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0236423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735611

RESUMO

BACKGROUND: Use of functional MRI (fMRI) in pre-surgical planning is a non-invasive method for pre-operative functional mapping for patients with brain tumors, especially tumors located near eloquent cortex. Currently, this practice predominantly involves task-based fMRI (T-fMRI). Resting state fMRI (RS-fMRI) offers an alternative with several methodological advantages. Here, we compare group-level analyses of RS-fMRI vs. T-fMRI as methods for language localization. PURPOSE: To contrast RS-fMRI vs. T-fMRI as techniques for localization of language function. METHODS: We analyzed data obtained in 35 patients who had both T-fMRI and RS-fMRI scans during the course of pre-surgical evaluation. The RS-fMRI data were analyzed using a previously trained resting-state network classifier. The T-fMRI data were analyzed using conventional techniques. Group-level results obtained by both methods were evaluated in terms of two outcome measures: (1) inter-subject variability of response magnitude and (2) sensitivity/specificity analysis of response topography, taking as ground truth previously reported maps of the language system based on intraoperative cortical mapping as well as meta-analytic maps of language task fMRI responses. RESULTS: Both fMRI methods localized major components of the language system (areas of Broca and Wernicke) although not with equal inter-subject consistency. Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. CONCLUSION: We demonstrate several advantages of classifier-based mapping of language representation in the brain. Language T-fMRI activated task-general (i.e., not language-specific) functional systems in addition to areas of Broca and Wernicke. In contrast, classifier-based analysis of RS-fMRI data generated maps confined to language-specific regions of the brain.


Assuntos
Encéfalo/diagnóstico por imagem , Área de Broca/patologia , Glioblastoma/diagnóstico , Imageamento por Ressonância Magnética , Adulto , Idoso , Atenção/fisiologia , Mapeamento Encefálico/métodos , Área de Broca/diagnóstico por imagem , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Lateralidade Funcional/fisiologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Descanso/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Adulto Jovem
2.
Neuroimage Clin ; 26: 102248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32334404

RESUMO

INTRODUCTION: Volumetric biomarkers for Alzheimer disease (AD) are attractive due to their wide availability and ease of administration, but have traditionally shown lower diagnostic accuracy than measures of neuropathological contributors to AD. Our purpose was to optimize the diagnostic specificity of structural MRIs for AD using quantitative, data-driven techniques. METHODS: This retrospective study assembled several non-overlapping cohorts (total n = 1287) with publicly available data and clinical patients from Barnes-Jewish Hospital (data gathered 1990-2018). The Normal Aging Cohort (n = 383) contained amyloid biomarker negative, cognitively normal (CN) participants, and provided a basis for determining age-related atrophy in other cohorts. The Training (n = 216) and Test (n = 109) Cohorts contained participants with symptomatic AD and CN controls. Classification models were developed in the Training Cohort and compared in the Test Cohort using the receiver operating characteristics areas under curve (AUCs). Additional model comparisons were done in the Clinical Cohort (n = 579), which contained patients who were diagnosed with dementia due to various etiologies in a tertiary care outpatient memory clinic. RESULTS: While the Normal Aging Cohort showed regional age-related atrophy, classification models were not improved by including age as a predictor or by using volumetrics adjusted for age-related atrophy. The optimal model used multiple regions (hippocampal volume, inferior lateral ventricle volume, amygdala volume, entorhinal thickness, and inferior parietal thickness) and was able to separate AD and CN controls in the Test Cohort with an AUC of 0.961. In the Clinical Cohort, this model separated AD from non-AD diagnoses with an AUC 0.820, an incrementally greater separation of the cohort than by hippocampal volume alone (AUC of 0.801, p = 0.06). Greatest separation was seen for AD vs. frontotemporal dementia and for AD vs. non-neurodegenerative diagnoses. CONCLUSIONS: Volumetric biomarkers distinguished individuals with symptomatic AD from CN controls and other dementia types but were not improved by controlling for normal aging.


Assuntos
Doença de Alzheimer/patologia , Atrofia/patologia , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Atrofia/diagnóstico por imagem , Atrofia/etiologia , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...