Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
2.
J Neuroinflammation ; 21(1): 82, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570852

RESUMO

Cranial irradiation causes cognitive deficits that are in part mediated by microglia, the resident immune cells of the brain. Microglia are highly reactive, exhibiting changes in shape and morphology depending on the function they are performing. Additionally, microglia processes make dynamic, physical contacts with different components of their environment to monitor the functional state of the brain and promote plasticity. Though evidence suggests radiation perturbs homeostatic microglia functions, it is unknown how cranial irradiation impacts the dynamic behavior of microglia over time. Here, we paired in vivo two-photon microscopy with a transgenic mouse model that labels cortical microglia to follow these cells and determine how they change over time in cranial irradiated mice and their control littermates. We show that a single dose of 10 Gy cranial irradiation disrupts homeostatic cortical microglia dynamics during a 1-month time course. We found a lasting loss of microglial cells following cranial irradiation, coupled with a modest dysregulation of microglial soma displacement at earlier timepoints. The homogeneous distribution of microglia was maintained, suggesting microglia rearrange themselves to account for cell loss and maintain territorial organization following cranial irradiation. Furthermore, we found cranial irradiation reduced microglia coverage of the parenchyma and their surveillance capacity, without overtly changing morphology. Our results demonstrate that a single dose of radiation can induce changes in microglial behavior and function that could influence neurological health. These results set the foundation for future work examining how cranial irradiation impacts complex cellular dynamics in the brain which could contribute to the manifestation of cognitive deficits.


Assuntos
Encéfalo , Microglia , Camundongos , Animais , Microglia/efeitos da radiação , Camundongos Transgênicos , Modelos Animais de Doenças , Irradiação Craniana/efeitos adversos
3.
Int J Radiat Oncol Biol Phys ; 119(1): 251-260, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008196

RESUMO

PURPOSE: Genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) associated with radiation therapy (RT) toxicities in patients with prostate cancer. SNP rs17599026 in intron 21 of KDM3B is significantly associated with the development of late urinary toxicity, specifically in the increase in urinary frequency 2 years after RT compared with pretreatment conditions. The present study aimed to provide mechanistic insights for this association. METHODS AND MATERIALS: Using human tissues and cell lines, we examined the protein expression of KDM3B and molecular mechanisms underlying the SNP modulation by variants of KDM3B SNP alleles. In animals with normal and heterozygous expressions of Kdm3b, we examined the relationship between Kdm3b expression and radiation toxicity. RESULTS: KDM3B rs17599026 lies in a motif important for circular RNA expression that is responsible for sponging miRNAs to regulate KDM3B expression. Using a murine model with heterozygous deletion of the Kdm3b gene, we found that lower Kdm3b expression is associated with altered pattern of urination after bladder irradiation, which is related to differential degrees of tissue inflammation as measured by analyses of gene expression, lymphocyte infiltration, and noninvasive ultrasound imaging. CONCLUSIONS: KDM3B SNPs can impact its expression through regulating noncoding RNA expression. Differential KDM3B expression underlies radiation toxicity through tissue inflammation at the molecular and physiological level. Our study outcome offers a foundation for mechanism-based mitigation for radiation toxicity for prostate cancer survivors.


Assuntos
Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , RNA Circular , Estudo de Associação Genômica Ampla , Neoplasias da Próstata/radioterapia , Inflamação , Histona Desmetilases com o Domínio Jumonji/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37999712

RESUMO

Pediatric Normal Tissue Effects in the Clinic (PENTEC) is an international multidisciplinary effort that aims to summarize normal-tissue toxicity risks based on published dose-volume data from studies of children and adolescents treated with radiation therapy (RT) for cancer. With recognition that children are uniquely vulnerable to treatment-related toxic effects, our mission and challenge was to assemble our group of physicians (radiation and pediatric oncologists, subspecialists), physicists with clinical and modeling expertise, epidemiologists, and other scientists to develop evidence-based radiation dosimetric guidelines, as affected by developmental status and other factors (eg, other cancer therapies and host factors). These quantitative toxicity risk estimates could serve to inform RT planning and thereby improve outcomes. Tandem goals included the description of relevant medical physics issues specific to pediatric RT and the proposal of dose-volume outcome reporting standards to inform future studies. We created 19 organ-specific task forces and methodology to unravel the wealth of data from heterogeneous published studies. This report provides a high-level summary of PENTEC's genesis, methods, key findings, and associated concepts that affected our work and an explanation of how our findings may be interpreted and applied in the clinic. We acknowledge our predecessors in these efforts, and we pay homage to the children whose lives informed us and to future generations who we hope will benefit from this additional step in our path forward.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37452796

RESUMO

PURPOSE: Kidney injury is a known late and potentially devastating complication of abdominal radiation therapy (RT) in pediatric patients. A comprehensive Pediatric Normal Tissue Effects in the Clinic review by the Genitourinary (GU) Task Force aimed to describe RT dose-volume relationships for GU dysfunction, including kidney, bladder, and hypertension, for pediatric malignancies. The effect of chemotherapy was also considered. METHODS AND MATERIALS: We conducted a comprehensive PubMed search of peer-reviewed manuscripts published from 1990 to 2017 for investigations on RT-associated GU toxicities in children treated for cancer. We retrieved 3271 articles with 100 fulfilling criteria for full review, 24 with RT dose data and 13 adequate for modeling. Endpoints were heterogenous and grouped according to National Kidney Foundation: grade ≥1, grade ≥2, and grade ≥3. We modeled whole kidney exposure from total body irradiation (TBI) for hematopoietic stem cell transplant and whole abdominal irradiation (WAI) for patients with Wilms tumor. Partial kidney tolerance was modeled from a single publication from 2021 after the comprehensive review revealed no usable partial kidney data. Inadequate data existed for analysis of bladder RT-associated toxicities. RESULTS: The 13 reports with long-term GU outcomes suitable for modeling included 4 on WAI for Wilms tumor, 8 on TBI, and 1 for partial renal RT exposure. These reports evaluated a total of 1191 pediatric patients, including: WAI 86, TBI 666, and 439 partial kidney. The age range at the time of RT was 1 month to 18 years with medians of 2 to 11 years in the various reports. In our whole kidney analysis we were unable to include chemotherapy because of the heterogeneity of regimens and paucity of data. Age-specific toxicity data were also unavailable. Wilms studies occurred from 1968 to 2011 with mean follow-ups 8 to 15 years. TBI studies occurred from 1969 to 2004 with mean follow-ups of 4 months to 16 years. We modeled risk of dysfunction by RT dose and grade of toxicity. Normal tissue complication rates ≥5%, expressed as equivalent doses, 2 Gy/fx for whole kidney exposures occurred at 8.5, 10.2, and 14.5 Gy for National Kidney Foundation grades ≥1, ≥2, and ≥3, respectively. Conventional Wilms WAI of 10.5 Gy in 6 fx had risks of ≥grade 2 toxicity 4% and ≥grade 3 toxicity 1%. For fractionated 12 Gy TBI, those risks were 8% and <3%, respectively. Data did not support whole kidney modeling with chemotherapy. Partial kidney modeling from 439 survivors who received RT (median age, 7.3 years) demonstrated 5 or 10 Gy to 100% kidney gave a <5% risk of grades 3 to 5 toxicity with 1500 mg/m2 carboplatin or no chemo. With 480 mg/m2 cisplatin, a 3% risk of ≥grade 3 toxicity occurred without RT and a 5% risk when 26% kidney received ≥10 Gy. With 63 g/m2 of ifosfamide, a 5% risk of ≥grade 3 toxicity occurred with no RT, and a 10% toxicity risk occurred when 42% kidney received ≥10 Gy. CONCLUSIONS: In patients with Wilms tumor, the risk of toxicity from 10.5 Gy of WAI is low. For 12 Gy fractionated TBI with various mixtures of chemotherapy, the risk of severe toxicity is low, but low-grade toxicity is not uncommon. Partial kidney data are limited and toxicity is associated heavily with the use of nephrotoxic chemotherapeutic agents. Our efforts demonstrate the need for improved data gathering, systematic follow-up, and reporting in future clinical studies. Current radiation dose used for Wilms tumor and TBI appear to be safe; however, efforts in effective kidney-sparing TBI and WAI regimens may reduce the risks of renal injury without compromising cure.

7.
Radiother Oncol ; 187: 109813, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468066

RESUMO

BACKGROUND: Radiation nephropathy (RN) can be a severe late complication for patients treated with radiotherapy (RT) targeting abdominal and paraspinal tumors. Recent studies investigating the mechanisms of RT-mediated injury in the kidney have demonstrated that RT disrupts the cellular integrity of renal podocytes leading to cell death and loss of renal function. AIM: To determine if RT-induced renal dysfunction is associated with alterations in podocyte and glomerular function, and whether RT-induced podocyte alterations were associated with changes in the glomerular basement membrane (GBM). METHODS: C57BL/6 mice were treated with focal bilateral X-irradiation using a single dose (SD) of 4 Gy, 10 Gy, or 14 Gy or fractionated dosing (FD) of 5x6Gy or 24x2Gy. Then, 10-40 weeks after RT parameters of renal function were measured, along with glomerular filtration rate (GFR) and glomerular histology, as well as ultrastructural changes in GBM by transmission electron microscopy. RESULTS: RT treatment resulted in persistent changes in renal function beginning at 10 weeks with little recovery up to 40 weeks post RT. Dose dependent changes were seen with increasing SD but no functional sparing was evident after FD. RT-induced loss of renal function was associated with expansion of the GBM and significant increases in foot process width, and associated with significant reduction in GFR, podocyte loss, and renal fibrosis. CONCLUSION: For the first time, these data show that expansion of the GBM is one consequence of radiation injury, and disarrangement of the GBM might be associated with the death of podocytes. These data shed new light on the role podocyte injury and GBM in RT-induced renal dysfunction.


Assuntos
Nefropatias , Podócitos , Lesões por Radiação , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Glomérulos Renais/patologia , Glomérulos Renais/ultraestrutura , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Podócitos/metabolismo , Podócitos/patologia , Podócitos/ultraestrutura , Lesões por Radiação/patologia
8.
Semin Radiat Oncol ; 33(3): 307-316, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37331785

RESUMO

Improvements in radiotherapy delivery have enabled higher therapeutic doses and improved efficacy, contributing to the growing number of long-term cancer survivors. These survivors are at risk of developing late toxicity from radiotherapy, and the inability to predict who is most susceptible results in substantial impact on quality of life and limits further curative dose escalation. A predictive assay or algorithm for normal tissue radiosensitivity would allow more personalized treatment planning, reducing the burden of late toxicity, and improving the therapeutic index. Progress over the last 10 years has shown that the etiology of late clinical radiotoxicity is multifactorial and informs development of predictive models that combine information on treatment (eg, dose, adjuvant treatment), demographic and health behaviors (eg, smoking, age), co-morbidities (eg, diabetes, collagen vascular disease), and biology (eg, genetics, ex vivo functional assays). AI has emerged as a useful tool and is facilitating extraction of signal from large datasets and development of high-level multivariable models. Some models are progressing to evaluation in clinical trials, and we anticipate adoption of these into the clinical workflow in the coming years. Information on predicted risk of toxicity could prompt modification of radiotherapy delivery (eg, use of protons, altered dose and/or fractionation, reduced volume) or, in rare instances of very high predicted risk, avoidance of radiotherapy. Risk information can also be used to assist treatment decision-making for cancers where efficacy of radiotherapy is equivalent to other treatments (eg, low-risk prostate cancer) and can be used to guide follow-up screening in instances where radiotherapy is still the best choice to maximize tumor control probability. Here, we review promising predictive assays for clinical radiotoxicity and highlight studies that are progressing to develop an evidence base for clinical utility.


Assuntos
Neoplasias da Próstata , Lesões por Radiação , Masculino , Humanos , Qualidade de Vida , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Fracionamento da Dose de Radiação , Tolerância a Radiação , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica
9.
Mol Neurobiol ; 60(8): 4811-4827, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37171575

RESUMO

We have previously shown that histone deacetylase (HDAC) inhibition and cranial radiotherapy (RT) independently improve molecular and behavioral Alzheimer's disease (AD)-like phenotypes. In the present study, we investigate the synergistic potential of using both RT and HDACi as a low-dose combination therapy (LDCT) to maximize disease modification (reduce neuroinflammation and amyloidogenic APP processing, increase neurotrophic gene expression) while minimizing the potential for treatment-associated side effects.LDCT consisted of daily administration of the HDAC3 inhibitor RGFP966 and/or bi-weekly cranial x-irradiation. Amyloid-beta precursor protein (APP) processing and innate immune response to LDCT were assessed in vitro and in vivo using human and murine cell models and 3xTg-AD mice. After 2 months of LDCT in mice, behavioral analyses as well as expression and modification of key AD-related targets (Aß, tau, Csf1r, Bdnf, etc.) were assessed in the hippocampus (HIP) and prefrontal cortex (PFC).LDCT induced a tolerant, anti-inflammatory innate immune response in microglia and increased non-amyloidogenic APP processing in vitro. Both RT and LDCT improved the rate of learning and spatial memory in the Barnes maze test. LDCT induced a unique anti-AD HIP gene expression profile that included upregulation of neurotrophic genes and downregulation of inflammation-related genes. RT lowered HIP Aß42/40 ratio and Bace1 protein, while LDCT lowered PFC p-tau181 and HIP Bace1 levels.Our study supports the rationale for combining complementary therapeutic approaches at low doses to target multifactorial AD pathology synergistically. Namely, LDCT with RGFP966 and cranial RT shows disease-modifying potential against a wide range of AD-related hallmarks.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Ácido Aspártico Endopeptidases/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Aprendizagem em Labirinto , Modelos Animais de Doenças
10.
Radiat Res ; 199(5): 506-516, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881804

RESUMO

Alzheimer's Disease (AD) represents a major health problem without effective treatments. As the incidence of the disease will continue to rise, it is imperative to find new treatment options to halt or slow disease progression. In recent years, several groups have begun to study the utility of low total dose radiation therapy (LTDRT) to inhibit some of the pathological features of AD and improve cognition in a variety of animal models. These preclinical studies have led to Phase 1 and 2 trials in different centers around the world. In this review, we present and interpret the pre-clinical evidence report some preliminary clinical data from a Phase 2 trial in early-stage AD patients.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/radioterapia , Cognição , Resultado do Tratamento
11.
Int J Radiat Biol ; 99(7): 1046-1054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36854008

RESUMO

PURPOSE: For decades, Dr. John Moulder has been a leading radiation biologist and one of the few who consistently supported the study of normal tissue responses to radiation. His meticulous modeling and collaborations across the field have offered a prime example of how research can be taken from the bench to the bedside and back, with the ultimate goal of providing benefit to patients. Much of the focus of John's work was on mitigating damage to the kidney, whether as the result of accidental or deliberate clinical exposures. Following in his footsteps, we offer here a brief overview of work conducted in the field of radiation-induced bladder injury. We then describe our own preclinical experimental studies which originated as a response to reports from a clinical genome-wide association study (GWAS) investigating genomic biomarkers of normal tissue toxicity in prostate cancer patients treated with radiotherapy. In particular, we discuss the use of Renin-Angiotensin System (RAS) inhibitors as modulators of injury, agents championed by the Moulder group, and how RAS inhibitors are associated with a reduction in some measures of toxicity. Using a murine model, along with precise CT-image guided irradiation of the bladder using single and fractionated dosing regimens, we have been able to demonstrate radiation-induced functional injury to the bladder and mitigation of this functional damage by an inhibitor of angiotensin-converting enzyme targeting the RAS, an experimental approach akin to that used by the Moulder group. We consider our scientific trajectory as a bedside-to-bench approach because the observation was made clinically and investigated in a preclinical model; this experimental approach aligns with the exemplary career of Dr. John Moulder. CONCLUSIONS: Despite the differences in functional endpoints, recent findings indicate a commonality between bladder late effects and the work in kidney pioneered by Dr. John Moulder. We offer evidence that targeting the RAS pathway may provide a targetable pathway to reducing late bladder toxicity.


Assuntos
Neoplasias da Próstata , Lesões por Radiação , Masculino , Humanos , Animais , Camundongos , Bexiga Urinária , Estudo de Associação Genômica Ampla , Rim/efeitos da radiação , Neoplasias da Próstata/radioterapia , Lesões por Radiação/etiologia , Lesões por Radiação/tratamento farmacológico
12.
Radiother Oncol ; 183: 109543, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36813173

RESUMO

BACKGROUND: The lung is sensitive to radiation, increasing normal tissue toxicity risks following radiation therapy. Adverse outcomes include pneumonitis and pulmonary fibrosis, which result from dysregulated intercellular communication within the pulmonary microenvironment. Although macrophages are implicated in these pathogenic outcomes, the impact of their microenvironment is not well understood. MATERIALS AND METHODS: C57BL/6J mice received 6Gyx5 irradiation to the right lung. Macrophage and T cell dynamics were investigated in ipsilateral right lungs, contralateral left lungs and non-irradiated control lungs 4-26wk post exposure. Lungs were evaluated by flow cytometry, histology and proteomics. RESULTS: Following uni-lung irradiation, focal regions of macrophage accumulation were noted in both lungs by 8wk, however by 26wk fibrotic lesions were observed only in ipsilateral lungs. Infiltrating and alveolar macrophages populations expanded in both lungs, however transitional CD11b + alveolar macrophages persisted only in ipsilateral lungs and expressed lower CD206. Concurrently, arginase-1 + macrophages accumulated in ipsilateral but not contralateral lungs at 8 and 26wk post exposure, while CD206 + macrophages were absent from these accumulations. While radiation expanded CD8 + T cells in both lungs, T regulatory cells only increased in ipsilateral lungs. Unbiased proteomics analysis of immune cells revealed a substantial number of differentially expressed proteins in ipsilateral lungs when compared to contralateral lungs and both differed from non-irradiated controls. CONCLUSIONS: Pulmonary macrophage and T cell dynamics are impacted by the microenvironmental conditions that develop following radiation exposure, both locally and systemically. While macrophages and T cells infiltrate and expand in both lungs, they diverge phenotypically depending on their environment.


Assuntos
Pulmão , Fibrose Pulmonar , Camundongos , Animais , Camundongos Endogâmicos C57BL , Pulmão/efeitos da radiação , Macrófagos/efeitos da radiação
13.
Phys Med Biol ; 68(6)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36584393

RESUMO

This Roadmap paper covers the field of precision preclinical x-ray radiation studies in animal models. It is mostly focused on models for cancer and normal tissue response to radiation, but also discusses other disease models. The recent technological evolution in imaging, irradiation, dosimetry and monitoring that have empowered these kinds of studies is discussed, and many developments in the near future are outlined. Finally, clinical translation and reverse translation are discussed.


Assuntos
Radiometria , Animais , Raios X , Radiometria/métodos , Radiografia , Modelos Animais , Imagens de Fantasmas
14.
Int J Radiat Oncol Biol Phys ; 115(4): 972-982, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400304

RESUMO

PURPOSE: Pelvic radiation therapy (RT) can cause debilitating bladder toxicities but few clinical interventions exist to prevent injury or alleviate symptoms. From a large genome-wide association study in patients with prostate cancer it was previously reported that SNPs tagging AGT, part of the renin-angiotensin system (RAS), correlated with patient-reported late hematuria, identifying a potential targetable pathway to prevent RT-induced bladder injury. To investigate this association, we performed a preclinical study to determine whether RAS modulation protected the bladder against RT injury. METHODS AND MATERIALS: C57BL/6 male mice were treated with an oral angiotensin converting enzyme inhibitor (ACEi: 0.3g/L captopril) 5 days before focal bladder X-irradiation with either single dose (SD) 30 Gy or 3 fractions of 8 Gy (8 Gy × 3 in 5 days). RT was delivered using XStrahl SARRP Muriplan CT-image guidance with parallel-opposed lateral beams. ACEi was maintained for 20 weeks post RT. Bladder toxicity was assessed using assays to identify local injury that included urinalysis, functional micturition, bladder-released exosomes, and histopathology, as well as an assessment of systemic changes in inflammatory-mediated circulating immune cells. RESULTS: SD and fractionated RT increased urinary frequency and reduced the volume of individual voids at >14 weeks, but not at 4 weeks, compared with nonirradiated animals. Urothelial layer width was positively correlated with mean volume of individual voids (P = .0428) and negatively correlated with number of voids (P = .028), relating urothelial thinning to changes in RT-mediated bladder dysfunction. These chronic RT-induced changes in micturition patterns were prevented by captopril treatment. Focal bladder irradiation significantly increased the mean particle count of urine extracellular vesicles and the monocyte and neutrophil chemokines CCL2 and MIP-2, and the proportions of circulating inflammatory-mediated neutrophils and monocytes, which was also prevented by captopril. Exploratory transcriptomic analysis of bladder tissue implicated inflammatory and erythropoietic pathways. CONCLUSIONS: This study demonstrated that systemic modulation of the RAS protected against and alleviated RT-induced late bladder injury but larger confirmatory studies are needed.


Assuntos
Captopril , Lesões por Radiação , Camundongos , Masculino , Animais , Captopril/farmacologia , Captopril/uso terapêutico , Bexiga Urinária/efeitos da radiação , Estudo de Associação Genômica Ampla , Camundongos Endogâmicos C57BL , Inibidores da Enzima Conversora de Angiotensina , Lesões por Radiação/etiologia
15.
FASEB J ; 36(10): e22545, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36094323

RESUMO

The kidneys are radiosensitive and dose-limiting organs for radiotherapy (RT) targeting abdominal and paraspinal tumors. Excessive radiation doses to the kidneys ultimately lead to radiation nephropathy. Our prior work unmasked a novel role for the lipid-modifying enzyme, sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b), in regulating the response of renal podocytes to radiation injury. In this study, we investigated the role of SMPDL3b in DNA double-strand breaks (DSBs) repair in vitro and in vivo. We assessed the kinetics of DSBs recognition and repair along with the ATM pathway and nuclear sphingolipid metabolism in wild-type (WT) and SMPDL3b overexpressing (OE) human podocytes. We also assessed the extent of DNA damage repair in SMPDL3b knock-down (KD) human podocytes, and C57BL6 WT and podocyte-specific SMPDL3b-knock out (KO) mice after radiation injury. We found that SMPDL3b overexpression enhanced DSBs recognition and repair through modulating ATM nuclear shuttling. OE podocytes were protected against radiation-induced apoptosis by increasing the phosphorylation of p53 at serine 15 and attenuating subsequent caspase-3 cleavage. SMPDL3b overexpression prevented radiation-induced alterations in nuclear ceramide-1-phosphate (C1P) and ceramide levels. Interestingly, exogenous C1P pretreatment radiosensitized OE podocytes by delaying ATM nuclear foci formation and DSBs repair. On the other hand, SMPDL3b knock-down, in vitro and in vivo, induced a significant delay in DSBs repair. Additionally, increased activation of apoptosis was induced in podocytes of SMPDL3b-KO mice compared to WT mice at 24 h post-irradiation. Together, our results unravel a novel role for SMPDL3b in radiation-induced DNA damage response. The current work suggests that SMPDL3b modulates nuclear sphingolipid metabolism, ATM nuclear shuttling, and DSBs repair.


Assuntos
Podócitos , Lesões por Radiação , Animais , Ceramidas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Quebras de DNA de Cadeia Dupla , Humanos , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/metabolismo , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
17.
J Neurol Surg B Skull Base ; 83(3): 228-236, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35769808

RESUMO

Objectives Vestibular schwannomas (VS) are intracranial tumors, which are caused by NF2 gene mutations that lead to loss of merlin protein. A treatment for VS is stereotactic radiosurgery, a form of radiation. To better understand the radiobiology of VS and radiation toxicity to adjacent structures, our main objectives were (1) investigate effects of single fraction (SF) radiation on viability, cytotoxicity, and apoptosis in normal Schwann cells (SCs) and merlin-deficient Schwann cells (MD-SCs) in vitro, and (2) analyze expression of double strand DNA breaks (γ-H2AX) and DNA repair protein Rad51 following irradiation. Study Design This is a basic science study. Setting This study is conducted in a research laboratory. Participants Patients did not participate in this study. Main Outcome Measures In irradiated normal SCs and MD-SCs (0-18 Gy), we measured (1) viability, cytotoxicity, and apoptosis using cell-based assays, and (2) percentage of cells with γ-H2AX and Rad51 on immunofluorescence. Results A high percentage of irradiated MD-SCs expressed γ-H2AX, which may explain the dose-dependent losses in viability in rodent and human cell lines. In comparison, the viabilities of normal SCs were only compromised at higher doses of radiation (>12 Gy, human SCs), which may be related to less Rad51 repair. There were no further reductions in viability in human MD-SCs beyond 9 Gy, suggesting that <9 Gy may be insufficient to initiate maximal tumor control. Conclusion The MD-SCs are more susceptible to radiation than normal SCs, in part through differential expression of γ-H2AX and Rad51. Understanding the radiobiology of MD-SCs and normal SCs is important for optimizing radiation protocols to maximize tumor control while limiting radiation toxicity in VS patients.

19.
Radiother Oncol ; 168: 75-82, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077710

RESUMO

BACKGROUND AND PURPOSE: Genome-wide association studies (GWAS) of late hematuria following prostate cancer radiotherapy identified single nucleotide polymorphisms (SNPs) near AGT, encoding angiotensinogen. We tested the hypothesis that patients taking angiotensin converting enzyme inhibitors (ACEi) have a reduced risk of late hematuria. We additionally tested genetically-defined hypertension. MATERIALS AND METHODS: Prostate cancer patients undergoing potentially-curative radiotherapy were enrolled onto two multi-center observational studies, URWCI (N = 256) and REQUITE (N = 1,437). Patients were assessed pre-radiotherapy and followed prospectively for development of toxicity for up to four years. The cumulative probability of hematuria was estimated by the Kaplan-Meier method. Multivariable grouped relative risk models assessed the effect of ACEi on time to hematuria adjusting for clinical factors and stratified by enrollment site. A polygenic risk score (PRS) for blood pressure was tested for association with hematuria in REQUITE and our Radiogenomics Consortium GWAS. RESULTS: Patients taking ACEi during radiotherapy had a reduced risk of hematuria (HR 0.51, 95%CI 0.28 to 0.94, p = 0.030) after adjusting for prior transurethral prostate and/or bladder resection, heart disease, pelvic node radiotherapy, and bladder volume receiving 70 Gy, which are associated with hematuria. A blood pressure PRS was associated with hypertension (odds ratio per standard deviation 1.38, 95%CI 1.31 to 1.46, n = 5,288, p < 0.001) but not hematuria (HR per standard deviation 0.96, 95%CI 0.87 to 1.06, n = 5,126, p = 0.41). CONCLUSIONS: Our study is the first to show a radioprotective effect of ACEi on bladder in an international, multi-site study of patients receiving pelvic radiotherapy. Mechanistic studies are needed to understand how targeting the angiotensin pathway protects the bladder.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Neoplasias da Próstata , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Estudo de Associação Genômica Ampla , Humanos , Masculino , Próstata , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Bexiga Urinária
20.
J Appl Clin Med Phys ; 23 Suppl 1: e13743, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36705246

RESUMO

In recent decades, the principal goals of participants in the field of radiation biologists have included defining dose thresholds for cancer and non-cancer endpoints to be used by regulators, clinicians and industry, as well as informing on best practice radiation utilization and protection applications. Importantly, much of this work has required an intimate relationship between "bench" radiation biology scientists and their target audiences (such as physicists, medical practitioners and epidemiologists) in order to ensure that the requisite gaps in knowledge are adequately addressed. However, despite the growing risk for public exposure to higher-than-background levels of radiation, e.g. from long-distance travel, the increasing use of ionizing radiation during medical procedures, the threat from geopolitical instability, and so forth, there has been a dramatic decline in the number of qualified radiation biologists in the U.S. Contributing factors are thought to include the loss of applicable training programs, loss of jobs, and declining opportunities for advancement. This report was undertaken in order to begin addressing this situation since inaction may threaten the viability of radiation biology as a scientific discipline.


Assuntos
Médicos , Radiobiologia , Humanos , Estados Unidos , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...