Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35877364

RESUMO

Dense collagen hydrogels are promising biomaterials for several tissue-engineering applications. They exhibit high mechanical properties, similar to physiological extracellular matrices, and do not shrink under cellular activity. However, they suffer from several drawbacks, such as weak nutrient and O2 diffusion, impacting cell survival. Here, we report a novel strategy to create a perfusion system within dense and thick collagen hydrogels to promote cell viability. The 3D printing of a thermoplastic filament (high-impact polystyrene, HIPS) with a three-wave shape is used to produce an appropriate sacrificial matrix. The HIPS thermoplastic polymer allows for good shape fidelity of the filament and does not collapse under the mechanical load of the collagen solution. After the collagen gels around the filament and dissolves, a channel is generated, allowing for adequate and rapid hydrogel perfusion. The dissolution process does not alter the collagen hydrogel's physical or chemical properties, and the perfusion is associated with an increased fibroblast survival. Here, we report the novel utilization of thermoplastics to generate a perfusion network within biomimetic collagen hydrogels.

2.
Carbohydr Polym ; 277: 118836, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893253

RESUMO

This work reports a rational design of injectable thermosensitive chitosan systems for cell encapsulation and delivery. Using mixtures of two phosphate salts, beta-glycerophosphate and ammonium hydrogen phosphate, we demonstrate that the pH and the osmolarity can be adjusted separately by varying the molar ratios between the salts and the d-glucosamine monomers. We found the existence of a critical temperature above which gelation time decays following a power-law. This gelation kinetics can be finely tuned through the pH and salt-glucosamine ratios. Formulations having physiological pH and osmolarity were produced for chitosan concentrations ranging from 0.4 to 0.9 wt%. They remain liquid for more than 2 h at 20 °C and form a macroporous gel within 2 min at 37 °C. In vitro encapsulation of pre-osteoblastic cells and gingival fibroblasts showed homogeneous cell distribution and good cell viability up to 24 h. Such an approach provides a valuable platform to design thermosensitive cell-laden systems.


Assuntos
Encapsulamento de Células , Quitosana/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Temperatura , Células 3T3 , Animais , Quitosana/administração & dosagem , Hidrogéis/administração & dosagem , Concentração de Íons de Hidrogênio , Camundongos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...