Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 205(8): e0001823, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37436150

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen heavily implicated in chronic diseases. Immunocompromised patients that become infected with P. aeruginosa usually are afflicted with a lifelong chronic infection, leading to worsened patient outcomes. The complement system is an integral piece of the first line of defense against invading microorganisms. Gram-negative bacteria are thought to be generally susceptible to attack from complement; however, P. aeruginosa can be an exception, with certain strains being serum resistant. Various molecular mechanisms have been described that confer P. aeruginosa unique resistance to numerous aspects of the complement response. In this review, we summarize the current published literature regarding the interactions of P. aeruginosa and complement, as well as the mechanisms used by P. aeruginosa to exploit various complement deficiencies and the strategies used to disrupt or hijack normal complement activities.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/fisiologia , Infecções por Pseudomonas/microbiologia , Proteínas do Sistema Complemento
2.
mBio ; 14(2): e0005623, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36920189

RESUMO

Bacterial persister cells-a metabolically dormant subpopulation tolerant to antimicrobials-contribute to chronic infections and are thought to evade host immunity. In this work, we studied the ability of Pseudomonas aeruginosa persister cells to withstand host innate immunity. We found that persister cells resist MAC-mediated killing by the complement system despite being bound by complement protein C3b at levels similar to regular vegetative cells, in part due to reduced bound C5b, and are engulfed at a lower rate (10- to 100-fold), even following opsonization. Once engulfed, persister cells resist killing and, contrary to regular vegetative cells which induce a M1 favored (CD80+/CD86+/CD206-, high levels of CXCL-8, IL-6, and TNF-α) macrophage polarization, they initially induce a M2 favored macrophage polarization (CD80+/CD86+/CD206+, high levels of IL-10, and intermediate levels of CXCL-8, IL-6, and TNF-α), which is skewed toward M1 favored polarization (high levels of CXCL-8 and IL-6, lower levels of IL-10) by 24 h of infection, once persister cells awaken. Overall, our findings further establish the ability of persister cells to evade the innate host response and to contribute chronic infections. IMPORTANCE Bacterial cells have a subpopulation-persister cells-that have a low metabolism. Persister cells survive antimicrobial treatment and can regrow to cause chronic and recurrent infections. Currently little is known as to whether the human immune system recognizes and responds to the presence of persister cells. In this work, we studied the ability of persister cells from Pseudomonas aeruginosa to resist the host defense system (innate immunity). We found that this subpopulation is recognized by the defense system, but it is not killed. The lack of killing likely stems from hindering the immune response regulation, resulting in a failure to distinguish whether a pathogen is present. Findings from this work increase the overall knowledge as to how chronic infections are resilient.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Infecção Persistente , Fator de Necrose Tumoral alfa/metabolismo , Imunidade , Infecções por Pseudomonas/microbiologia
3.
bioRxiv ; 2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36711557

RESUMO

Bacterial persister cells - a metabolically dormant subpopulation tolerant to antimicrobials - contribute to chronic infections and are thought to evade host immunity. In this work, we studied the ability of Pseudomonas aeruginosa persister cells to withstand host innate immunity. We found that persister cells resist MAC-mediated killing by the complement system despite being bound by complement protein C3b at levels similar to regular vegetative cells, in part due to reduced bound C5b - and are engulfed at a lower rate (10-100 fold), even following opsonization. Once engulfed, persister cells resist killing and, contrary to regular vegetative cells which induce a M1 favored (CD80+/CD86+/CD206-, high levels of CXCL-8, IL-6, and TNF-α) macrophage polarization, they initially induce a M2 favored macrophage polarization (CD80+/CD86+/CD206+, high levels of IL-10, and intermediate levels of CXCL-8, IL-6, and TNF-α), which is skewed towards M1 favored polarization (high levels of CXCL-8 and IL-6, lower levels of IL-10) by 24 hours of infection, once persister cells awaken. Overall, our findings further establish the ability of persister cells to evade the innate host response and to contribute chronic infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...