Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 1(4): 100044, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35475144

RESUMO

Cell membrane deformation is an important feature that occurs during many physiological processes, and its study has been put to good use to investigate cardiomyocyte function. Several methods have been developed to extract information on cardiomyocyte contractility. However, no existing computational framework has provided, in a single platform, a straightforward approach to acquire, process, and quantify this type of cellular dynamics. For this reason, we develop CONTRACTIONWAVE, high-performance software written in Python programming language that allows the user to process large data image files and obtain contractility parameters by analyzing optical flow from images obtained with videomicroscopy. The software was validated by using neonatal, adult-, and human-induced pluripotent stem-cell-derived cardiomyocytes, treated or not with drugs known to affect contractility. Results presented indicate that CONTRACTIONWAVE is an excellent tool for examining changes to cardiac cellular contractility in animal models of disease and for pharmacological and toxicology screening during drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fluxo Óptico , Animais , Recém-Nascido , Humanos , Software , Miócitos Cardíacos , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...