Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111521

RESUMO

The intranasal route has been suggested as a promising alternative to improve the direct transport of molecules to the brain, avoiding the need to cross the blood-brain barrier (BBB). In this area, the use of lipid nanoparticles, namely solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has been highlighted as a promising strategy to improve the treatment of neurodegenerative diseases. In this work, formulations containing SLN and NLC that were loaded with astaxanthin that was obtained from different sources (astaxanthin extract (AE) from the algae Haematococcus pluvialis and pure astaxanthin (PA) from the fungi Blakeslea trispora) were prepared for nose-to-brain administration, and comparative in vitro experiments were performed to evaluate the biocompatibility of the formulations with nasal (RPMI 2650) and neuronal (SH-SY5Y) cells. Afterwards, the antioxidant activity of the formulations was evaluated for its potential neuroprotective effects, using different chemical aggressors. Finally, the cellular uptake of the astaxanthin was evaluated for the formulations that showed the greatest neuroprotection of the neuronal cells against chemical-induced damage. On the production day, all the formulations showed a particle size, a high encapsulation efficiency (EE), the presence of nanoparticles with a typical spherical shape, and a polydispersity index (PDI) and zeta potential (ZP) that are suitable for nose-to-brain administration. After three months of storage at room temperature, no significant changes were observed in the characterization parameters, predicting a good long-term stability. Furthermore, these formulations were shown to be safe with concentrations of up to 100 µg/mL in differentiated SH-SY5Y and RPMI 2650 cells. Regarding neuroprotection studies, the PA-loaded SLN and NLC formulations showed an ability to counteract some mechanisms of neurodegeneration, including oxidative stress. Moreover, when compared with the PA-loaded SLN, the PA-loaded NLC showed greater neuroprotective effects against the cytotoxicity induced by aggressors. In contrast, the AE-loaded SLN and NLC formulations showed no significant neuroprotective effects. Although further studies are needed to confirm these neuroprotective effects, the results of this study suggest that the intranasal administration of PA-loaded NLC may be a promising alternative to improve the treatment of neurodegenerative diseases.

2.
Polymers (Basel) ; 14(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335469

RESUMO

Antimicrobial textiles are helpful tools to fight against multidrug-resistant pathogens and nosocomial infections. The deposition of silver nanoparticles (AgNPs) onto textiles has been studied to achieve antimicrobial properties. Yet, due to health and environmental safety concerns associated with such formulations, processing optimizations have been introduced: biocompatible materials, environmentally friendly agents, and delivery platforms that ensure a controlled release. In particular, the functionalization of polyester (PES) fabric with antimicrobial agents is a formulation in high demand in medical textiles. However, the lack of functional groups on PES fabric hinders the development of cost-effective, durable systems that allow a controlled release of antimicrobial agents. In this work, PES fabric was functionalized with AgNPs using one or two biocompatible layers of chitosan or hexamethyldisiloxane (HMDSO). The addition of organo-matrices stabilized the AgNPs onto the fabrics, protected AgNPs from further oxidation, and controlled their release. In addition, the layered samples were efficient against Staphylococcus aureus and Escherichia coli. The sample with two layers of chitosan showed the highest efficacy against S. aureus (log reduction of 2.15 ± 1.08 after 3 h of contact). Against E. coli, the sample with two layers of chitosan showed the best properties. Chitosan allowed to control the antimicrobial activity of AgNPs, avoid the complete loss of AgNPs after washings and act in synergy with AgNPs. After 3 h of incubation, this sample presented a log reduction of 4.81, and 7.27 of log reduction after 5 h of incubation. The antimicrobial results after washing showed a log reduction of 3.47 and 4.88 after 3 h and 5 h of contact, respectively. Furthermore, the sample with a final layer of HMDSO also presented a controlled antimicrobial effect. The antimicrobial effect was slower than the sample with just an initial layer of HMDSO, with a log reduction of 4.40 after 3 h of incubation (instead of 7.22) and 7.27 after 5 h. The biocompatibility of the composites was confirmed through the evaluation of their cytotoxicity towards HaCaT cells (cells viability > 96% in all samples). Therefore, the produced nanocomposites could have interesting applications in medical textiles once they present controlled antimicrobial properties, high biocompatibility and avoid the complete release of AgNPs to the environment.

3.
Pharmaceutics ; 14(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35213973

RESUMO

The long lifespan of the world's population has been raising interest in the research for new solutions to delay the aging process. With the aim of skin aging prevention, solid lipid nanoparticles (SLNs) were developed in this work for the encapsulation of three lipophilic natural compounds extracted from vine cane-epigallocatechin gallate (EGCG), resveratrol and myricetin. The developed loaded-SLNs proved to be stable, maintaining their adequate physicochemical characteristics for 30 days. In addition, the loaded-SLNs formulations exhibited high encapsulation efficiencies and loading capacities and high intracellular antioxidant activity. The mixture of EGCG-loaded SLNs with resveratrol-loaded SLNs proved to have the highest protection against induced oxidative stress. The in vitro cytotoxicity of the loaded SLNs was also evaluated, showing that the developed formulations are biocompatible for concentrations up to 50 µg/mL and could be safe for use in cosmetics. The encapsulation of EGCG, resveratrol and myricetin in SLNs seems to be a suitable strategy for the delivery of these antioxidants to the skin, improving their bioavailability.

4.
Pharmaceutics ; 13(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959324

RESUMO

Oxidative stress, triggered by UV radiation, is one of the major causes of free radical-associated disorders, such as skin cancer. The application of natural compounds (NCs) with antioxidant effects can attenuate free radicals' accumulation and, therefore, provide a strategy for skin care and cancer prevention. In this work, three natural compounds, naringenin, nordihydroguaiaretic acid (NDGA), and kaempferol, were encapsulated into nanostructured lipid carriers (NLCs) aiming for the development of a formulation for cutaneous application with antioxidant properties. For the experiments, different formulation parameters were evaluated to optimize the NLCs that showed a diameter around 200 nm, which is an adequate particle size for incorporation in cosmetics. Transmission electron microscopy (TEM) analysis confirmed the NLCs' typical spherical morphology. Encapsulation efficiency (EE) and loading capacity (LC) values revealed an effective production process, with EEs over 90% and LCs near the maximum value. The developed NLCs revealed a prolonged in vitro release of the natural compounds. The NLCs were stable under storage conditions, maintaining their psychochemical characteristics for 30 days. Additionally, they did not show any physical instability in accelerated stability studies, which also suggests long-term stability. Finally, the NCs antioxidant activity was evaluated. Interestingly, the NDGA and kaempferol mixture provided an antioxidant synergic effect. The NLC formulations' cytotoxicity was tested in vitro in immortalized human keratinocytes (HaCaT). In addition, putative antioxidant effects of the developed NLC formulations against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress were studied, and the NDGA-loaded NLC was revealed to be the one with the most protective effect. Therefore, we concluded that the naringenin, NDGA, and kaempferol incorporation into NLCs constitutes a promising strategy to increase their bioavailability and delivery to the skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...