Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 340: 139750, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37574083

RESUMO

Composition and source of dissolved organic matter (DOM) in water influence the rate of production of reactive intermediates (RIs), affecting the photodegradation of phenolic contaminants of emerging concern (PhCECs). However, this relationship has not been fully quantified. Here, for the first time, we propose a mechanism for photodegradation of a surrogate of PhCECs, p-cresol, in different DOM standard solutions under simulated sunlight irradiation. More importantly, the correlation of DOM optical parameters and p-cresol photodegradation kinetic parameters was determined by Pearson correlation. Results showed that indirect photodegradation was the only degradation pathway for p-cresol, mainly through reaction with excited triplet state of dissolved organic matter (3DOM*). Singlet oxygen (1O2) and hydroxyl radical (•OH) hindered degradation of p-cresol by decreasing the steady state concentration of 3DOM*. Moreover, less aromatic and smaller molecular size DOM showed higher steady-state concentration and quantum yield of 1O2, and 3DOM*, resulting in faster p-cresol photodegradation. Finally, 7 out of 8 optical parameters showed strong correlation with the p-cresol photodegradation rate constant. The mechanism and correlations found are a potential tool to predict PhCECs photodegradation in water using DOM optical parameters.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Poluentes Químicos da Água/efeitos da radiação , Água , Fenóis , Fotólise
2.
Polymers (Basel) ; 14(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956672

RESUMO

The presence of arsenic and ammonia in ground and surface waters has resulted in severe adverse effects to human health and the environment. Removal technologies for these contaminants include adsorption and membrane processes. However, materials with high selectivity and pressure stability still need to be developed. In this work, adsorbents and adsorptive membranes were prepared using nanostructured graphitic carbon nitride decorated with molecularly imprinted acrylate polymers templated for arsenate and ammonia. The developed adsorbent removed arsenate at a capacity and selectivity similar to commercial ion-exchange resins. Ammonia was removed at higher capacity than commercial ion exchange resins, but the adsorbent showed lower selectivity. Additionally, the prepared membranes removed more arsenate and ammonia than non-imprinted controls, even in competition with abundant ions in water. Further optimization is required to improve pressure stability and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...