Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 103(9): 4584-4591, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36852427

RESUMO

BACKGROUND: The nixtamalization process improves the nutritional and technological properties of maize. This process generates nixtamalized maize bran as a by-product, which is a source of arabinoxylans (AX). AX are polysaccharides constituted of a xylose backbone with mono- or di-arabinose substitutions, which can be ester-linked to ferulic acid (FA). The present study investigated the fine structural features and antioxidant capacity (AC) of nixtamalized maize bran arabinoxylans (MBAX) to comprehend the structure-radical scavenging capacity relationship in this polysaccharide deeply. RESULTS: MBAX presented a molecular weight, intrinsic viscosity, and hydrodynamic radius of 674 kDa, 1.8 dL g-1 , and 24.6 nm, respectively. The arabinose-to-xylose ratio (A/X) and FA content were 0.74 and 0.25 g kg-1 polysaccharide, respectively. MBAX contained dimers (di-FA) and trimer (tri-FA) of FA (0.14 and 0.07 g kg-1 polysaccharide, respectively). The main di-FA isomer was the 8-5' structure (80%). Fourier transform infrared spectroscopy confirmed MBAX molecular identity, and the second derivate of the spectral data revealed a band at 958 cm-1 related to the presence of arabinose disubstitution. 1 H-Nuclear magnetic resonance spectroscopy showed mono- and di-arabinose substitution in the xylan backbone with more monosubstituted residues. MBAX registered an AC of 25 and 20 µmol Trolox equivalents g-1 polysaccharide despite a low FA content, using ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid) and DPPH (1,1-diphenyl-2-picrylhydrazyl) methods, respectively. CONCLUSION: AC in MBAX could be related to the high A/X ratio (mainly monosubstitution) and the high 8-5' di-FA proportion in this polysaccharide. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Xilanos , Xilanos/química , Zea mays/química , Xilose , Arabinose , Polissacarídeos/química
2.
Food Sci Technol Int ; 29(1): 40-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34816761

RESUMO

The processes to obtain value-added products from brewers' spent grain, a contaminant industrial waste, require alkaline non-ecofriendly pre-treatments. The arabinoxylans from brewers' spent grain were extracted by nixtamalization evaluating the extraction procedure, antioxidant capacity and molecular characteristics. The best arabinoxylans yields were those extracted with CaO at 100 °C and 25 °C (6.43% and 3.37%, respectively). The antioxidant capacity by 2,2-diphenyl-1-picrylhydrazyl assay of the arabinoxylans after thermal treatment and additional arabinoxylans after thermal treatment proteolysis were 434 and 118 mg TE/g, while by 2,20'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt assay the value was similar (380 µmol TE/g). The intrinsic viscosities and viscosimetric molecular weights were 69 mL/g and 13 kDa for arabinoxylans after thermal treatment, and 15 mL/g and 1.6 kDa for arabinoxylans after thermal treatment proteolysis, respectively. The protein and lignin contents were 3.1% and 6.4% for arabinoxylans after thermal treatment and, 0.9% and 4.6% for arabinoxylans after thermal treatment proteolysis, while their arabinose: xylose ratios were 0.39 and 0.36, with ferulic acid contents of 0.63 and 0.14 mg/g, respectively. Both products of arabinoxylans were molecularly identical by Fourier transform infra-red. Although the purity of the extracted arabinoxylans was improved with proteolysis, their intrinsic viscosity and viscosimetric molecular weight were affected. The extraction of arabinoxylans from brewers' spent grain by CaO nixtamalization alone or after additional proteolysis was successful to obtain purity and good antioxidant capacity.


Assuntos
Antioxidantes , Xilanos , Grão Comestível , Resíduos Industriais
3.
J Sci Food Agric ; 98(3): 914-922, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28696544

RESUMO

BACKGROUND: Arabinoxylans (AX) are polysaccharides consisting of a backbone of xyloses with arabinose substituents ester-linked to ferulic acid (FA). The arabinose to xylose ratio (A/X) in AX may vary from 0.3 to 1.1. AX form covalent gels by cross-linking of FA but physical interactions between AX chains also contribute to the network formation. The present study aimed to investigate the rheological and microstructural characteristics of gels based on AX enzymatically modified in A/X. RESULTS: Tailored AX presented A/X ranging from 0.68 to 0.51 and formed covalent gels. Dimers of FA content and elasticity (G') increased from 0.31 to 0.39 g kg-1 AX and from 106 to 164 Pa when the A/X in the polysaccharide decreased from 0.68 to 0.51. Atomic force microscopy images of AX gels showed a sponge-like microstructure at A/X = 0.68, whereas, at lower values, gels presented a more compact microstructure. Scanning electron microscopy analysis of AX gels show an arrangement of different morphology, passing from an imperfect honeycomb (A/X = 0.68) to a flake-like microstructure (A/X = 0.51). CONCLUSION: Lower A/X values favor the aggregation of AX chains resulting in an increase in di-FA content, which improves the rheological and microstructural characteristics of the gel formed. © 2017 Society of Chemical Industry.


Assuntos
Arabinose/química , Extratos Vegetais/química , Triticum/química , Xilanos/química , Xilose/química , Biocatálise , Elasticidade , Manipulação de Alimentos , Géis/química , Glicosídeo Hidrolases/química , Lacase , Reologia , Viscosidade
4.
Molecules ; 14(4): 1475-82, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19384279

RESUMO

The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v) in the presence of insulin or beta-lactoglobulin at 0.1% (w/v) was investigated. Insulin and beta-lacto-globulin did not modify either the gel elasticity (9 Pa) or the cross-links content (0.03 and 0.015 microg di- and triferulic acids/mg arabinoxylan, respectively). The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 x 10(-7) and 0.79 x 10(-7) cm(2)/s for insulin (5 kDa) and beta-lactoglobulin (18 kDa), respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.


Assuntos
Sistemas de Liberação de Medicamentos , Géis/química , Proteínas/metabolismo , Xilanos/química , Zea mays/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Géis/metabolismo , Insulina/metabolismo , Lacase/metabolismo , Lactoglobulinas/metabolismo , Peso Molecular , Proteínas de Plantas/metabolismo , Proteínas/química , Xilanos/metabolismo
5.
Biochimie ; 88(10): 1505-10, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16828951

RESUMO

Trehalose 6-phosphate synthase was purified from Selaginella lepidophylla plants and three aggregates of the enzyme were found by molecular exclusion chromatography, ion exchange chromatography and electrophoresis. Molecular exclusion chromatography showed four activity peaks with molecular weights of 624, 434, 224 and 115 kDa. Ion exchange chromatography allowed three fractions to be separated with TPS activity which eluted at 0.35, 0.7 and 1 M KCl. Native PAGE of each pool had three protein bands with apparent M(r) 660, 440 and 200 kDa. Western blot results showed that anti-TPS antibody interacted with 115 and 67 kDa polypeptides; these polypeptides share peptide sequences as indicated by internal sequence data. The effects of pH and temperature on enzyme stability and activity were studied. For fractions eluted at 0.35 and 1.0 M KCl, the optimum pH is 5.5, while an optimum pH of 7.5 for 0.7 M fraction was found. The three fractions eluted from ion exchange chromatography were stable in a pH 5-11 range. Optimal temperatures were 25, 45 and 55 degrees C for 0.7, 0.35 and 1.0 M fractions, respectively. The 0.7 M KCl fraction showed highest stability in a temperature range of 25-60 degrees C, whereas the 0.35 M KCl fraction had the lowest in the same temperature range.


Assuntos
Glucosiltransferases/química , Selaginellaceae/enzimologia , Sequência de Aminoácidos , Cromatografia em Gel , Cromatografia por Troca Iônica , Estabilidade Enzimática , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Selaginellaceae/classificação , Temperatura
6.
Biochem Biophys Res Commun ; 313(2): 314-9, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14684162

RESUMO

A protein of 440 kDa with trehalose 6-phosphate synthase activity was purified with only one purification step by immobilized metal affinity chromatography, from fully hydrated Selaginella lepidophylla plants. The enzyme was purified 50-fold with a yield of 89% and a specific activity of 7.05 U/mg protein. This complex showed two additional aggregation states of 660 and 230 kDa. The three complexes contained 50, 67, and 115 kDa polypeptides with pI of 4.83, 4.69, and 4.55. The reaction was highly specific for glucose 6-phosphate and UDP-glucose. The optimum pH was 7.0 and the enzyme was stable from pH 5.0 to 10. The enzyme was activated by low concentrations of Ca2+, Mg2+, K+, and Na+ and by fructose 6-phosphate, fructose, and glucose. Proline had an inhibitory effect, while sucrose and trehalose up to 0.4M did not have any effect on the activity. Neither the substrates nor final product had an inhibitory effect.


Assuntos
Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Selaginellaceae/enzimologia , Metabolismo dos Carboidratos , Carboidratos/química , Carboidratos/farmacologia , Eletroforese em Gel Bidimensional , Concentração de Íons de Hidrogênio , Íons/farmacologia , Pressão Osmótica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...