Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39379653

RESUMO

This work developed a novel sustainable adsorbent (PF-Aq) prepared by the amino-functionalization of palm oil fibers (PF). XPS, SEM/EDS, TGA/DSC, and FT-IR techniques proved the successful functionalization of the PF with the amino group. The PF-Aq adsorbent presents a high adsorption capacity for phosphate and Cr(VI) ions. Adsorption kinetics of the ions onto the PF-Aq followed the general-order models, with 240- and 300-min equilibrium times for phosphate and Cr(VI), respectively. The Freundlich equilibrium model can explain the adsorption of phosphate and Cr(VI) on the PF-Aq. Besides, the maximum adsorption capacities were 151.07 mg g-1 for phosphate and 206.08 mg g-1 for Cr(VI). The best pH for the adsorption of both ions on PF-Aq was 4.0. Interestingly, adsorption was exothermic for phosphate and endothermic for Cr(VI). The adsorption capacities were reduced by 16% for phosphate and 10% for Cr(VI) after 5 adsorption-desorption cycles, demonstrating the good recyclability of the PF-Aq. It can be concluded that PF-Aq is a relevant adsorbent to uptake phosphate and Cr(VI) from water due to its high adsorption capacity, low cost, recyclability, availability, and fast kinetics. Finally, the excellent adsorption potential results from inserting amino groups in the PF, allowing electrostatic interactions between adsorbent and adsorbate.

2.
Pharmaceutics ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751583

RESUMO

We previously developed two optimized formulations of dexamethasone acetate (DXMa) hydrogels by means of special cubic mixture designs for topical ocular administration. These gels were elaborated with hydroxypropyl-ß-CD (HPßCD) and hydroxypropyl-γ-CD (HPγCD) and commercial hydrogels in order to enhance DXMa water solubility and finally DXMa's ocular bioavailability and transcorneal penetration. The main objective of this study was to characterize them and to evaluate in vitro, ex vivo, and in vivo their safety, biopermanence, and transcorneal permeation. Gels A and B are Newtonian fluids and display a viscosity of 13.2 mPa.s and 18.6 mPa.s, respectively, which increases their ocular retention, according to the in vivo biopermanence study by PET/CT. These hydrogels could act as corneal absorption promoters as they allow a higher transcorneal permeation of DXMa through porcine excised cornea, compared to DEXAFREE® and MAXIDEX®. Cytotoxicity assays showed no cytotoxic effects on human primary corneal epithelial cells (HCE). Furthermore, Gel B is clearly safe for the eye, but the effect of Gel A on the human eye cannot be predicted. Both gels were also stable 12 months at 25 °C after sterilization by filtration. These results demonstrate that the developed formulations present a high potential for the topical ocular administration of dexamethasone acetate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA