Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1285372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046670

RESUMO

In 2023, approximately 288,300 new diagnoses of prostate cancer will occur, with 34,700 disease-related deaths. Death from prostate cancer is associated with metastasis, enabled by progression of tumor phenotypes and successful extracapsular extension to reach Batson's venous plexus, a specific route to the spine and brain. Using a mouse-human tumor xenograft model, we isolated an aggressive muscle invasive cell population of prostate cancer, called DU145J7 with a distinct biophysical phenotype, elevated histone H3K27, and increased matrix metalloproteinase 14 expression as compared to the non-aggressive parent cell population called DU145WT. Our goal was to determine the sensitivities to known chemotherapeutic agents of the aggressive cells as compared to the parent population. High-throughput screening was performed with 5,578 compounds, comprising of approved and investigational drugs for oncology. Eleven compounds were selected for additional testing, which revealed that vorinostat, 5-azacitidine, and fimepinostat (epigenetic inhibitors) showed 2.6-to-7.5-fold increases in lethality for the aggressive prostate cancer cell population as compared to the parent, as judged by the concentration of drug to inhibit 50% cell growth (IC50). On the other hand, the DU145J7 cells were 2.2-to-4.0-fold resistant to mitoxantrone, daunorubicin, and gimatecan (topoisomerase inhibitors) as compared to DU145WT. No differences in sensitivities between cell populations were found for docetaxel or pirarubicin. The increased sensitivity of DU145J7 prostate cancer cells to chromatin modifying agents suggests a therapeutic vulnerability occurs after tumor cells invade into and through muscle. Future work will determine which epigenetic modifiers and what combinations will be most effective to eradicate early aggressive tumor populations.

2.
Biophys J ; 122(21): 4194-4206, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37766428

RESUMO

Bladder, colon, gastric, prostate, and uterine cancers originate in organs surrounded by laminin-coated smooth muscle. In human prostate cancer, tumors that are organ confined, without extracapsular extension through muscle, have an overall cancer survival rate of up to 97% compared with 32% for metastatic disease. Our previous work modeling extracapsular extension reported the blocking of tumor invasion by mutation of a laminin-binding integrin called α6ß1. Expression of the α6AA mutant resulted in a biophysical switch from cell-ECM (extracellular matrix) to cell-cell adhesion with drug sensitivity properties and an inability to invade muscle. Here we used different admixtures of α6AA and α6WT cells to test the cell heterogeneity requirements for muscle invasion. Time-lapse video microscopy revealed that tumor mixtures self-assembled into invasive networks in vitro, whereas α6AA cells assembled only as cohesive clusters. Invasion of α6AA cells into and through live muscle occurred using a 1:1 mixture of α6AA and α6WT cells. Electric cell-substrate impedance sensing measurements revealed that compared with α6AA cells, invasion-competent α6WT cells were 2.5-fold faster at closing a cell-ECM or cell-cell wound, respectively. Cell-ECM rebuilding kinetics show that an increased response occurred in mixtures since the response was eightfold greater compared with populations containing only one cell type. A synthetic cell adhesion cyclic peptide called MTI-101 completely blocked electric cell-substrate impedance sensing cell-ECM wound recovery that persisted in vitro up to 20 h after the wound. Treatment of tumor-bearing animals with 10 mg/kg MTI-101 weekly resulted in a fourfold decrease of muscle invasion by tumor and a decrease of the depth of invasion into muscle comparable to the α6AA cells. Taken together, these data suggest that mixed biophysical phenotypes of tumor cells within a population can provide functional advantages for tumor invasion into and through muscle that can be potentially inhibited by a synthetic cell adhesion molecule.


Assuntos
Extensão Extranodal , Laminina , Masculino , Animais , Humanos , Laminina/química , Laminina/genética , Laminina/metabolismo , Integrina alfa6/genética , Integrina alfa6/metabolismo , Adesão Celular , Músculos/metabolismo , Fenótipo
3.
Front Cell Dev Biol ; 10: 837585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300411

RESUMO

Muscle-invasive lethal carcinomas traverse into and through this specialized biophysical and growth factor enriched microenvironment. We will highlight cancers that originate in organs surrounded by smooth muscle, which presents a barrier to dissemination, including prostate, bladder, esophageal, gastric, and colorectal cancers. We propose that the heterogeneity of cell-cell and cell-ECM adhesion receptors is an important driver of aggressive tumor networks with functional consequences for progression. Phenotype heterogeneity of the tumor provides a biophysical advantage for tumor network invasion through the tensile muscle and survival of the tumor network. We hypothesize that a functional epithelial-mesenchymal cooperation (EMC)exists within the tumor invasive network to facilitate tumor escape from the primary organ, invasion and traversing of muscle, and navigation to metastatic sites. Cooperation between specific epithelial cells within the tumor and stromal (mesenchymal) cells interacting with the tumor is illustrated using the examples of laminin-binding adhesion molecules-especially integrins-and their response to growth and inflammatory factors in the tumor microenvironment. The cooperation between cell-cell (E-cadherin, CDH1) and cell-ECM (α6 integrin, CD49f) expression and growth factor receptors is highlighted within poorly differentiated human tumors associated with aggressive disease. Cancer-associated fibroblasts are examined for their role in the tumor microenvironment in generating and organizing various growth factors. Cellular structural proteins are potential utility markers for future spatial profiling studies. We also examine the special characteristics of the smooth muscle microenvironment and how invasion by a primary tumor can alter this environment and contribute to tumor escape via cooperation between epithelial and stromal cells. This cooperative state allows the heterogenous tumor clusters to be shaped by various growth factors, co-opt or evade immune system response, adapt from hypoxic to normoxic conditions, adjust to varying energy sources, and survive radiation and chemotherapeutic interventions. Understanding the epithelial-mesenchymal cooperation in early tumor invasive networks holds potential for both identifying early biomarkers of the aggressive transition and identification of novel agents to prevent the epithelial-mesenchymal cooperation phenotype. Epithelial-mesenchymal cooperation is likely to unveil new tumor subtypes to aid in selection of appropriate therapeutic strategies.

4.
Front Oncol ; 12: 1083150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36727054

RESUMO

The advent of perpetuating living organoids derived from patient tissue is a promising avenue for cancer research but is limited by difficulties with precise characterization. In this brief communication, we demonstrate via time-lapse imaging distinct phenotypes of prostate organoids derived from patient material- without confirmation of cellular identity. We show that organoids derived from histologically normal tissue more readily spread on a physiologic extracellular matrix (ECM) than on pathologic ECM (p<0.0001), while tumor-derived organoids spread equally on either substrate (p=0.2406). This study is an important proof-of-concept to defer precise characterization of organoids and still glean information into disease pathology.

5.
Cancer Metastasis Rev ; 40(1): 205-219, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33398621

RESUMO

Smooth muscle is found around organs in the digestive, respiratory, and reproductive tracts. Cancers arising in the bladder, prostate, stomach, colon, and other sites progress from low-risk disease to high-risk, lethal metastatic disease characterized by tumor invasion into, within, and through the biophysical barrier of smooth muscle. We consider here the unique biophysical properties of smooth muscle and how cohesive clusters of tumor use mechanosensing cell-cell and cell-ECM (extracellular matrix) adhesion receptors to move through a structured muscle and withstand the biophysical forces to reach distant sites. Understanding integrated mechanosensing features within tumor cluster and smooth muscle and potential triggers within adjacent adipose tissue, such as the unique damage-associated molecular pattern protein (DAMP), eNAMPT (extracellular nicotinamide phosphoribosyltransferase), or visfatin, offers an opportunity to prevent the first steps of invasion and metastasis through the structured muscle.


Assuntos
Músculo Liso/patologia , Invasividade Neoplásica , Neoplasias , Matriz Extracelular , Humanos , Neoplasias/patologia
8.
Dermatol Ther ; 33(6): e14246, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860476

RESUMO

While dietary triggers have been investigated in acne and other inflammatory follicular dermatoses, there is a paucity of data on diet and hidradenitis suppurativa (HS). We sought to identify exacerbating and alleviating foods in HS patients. An anonymous survey was distributed via HS Facebook support groups and in person at HS specialty clinics. Participants were asked to select all that apply from a list to indicate foods that worsen and make HS better including sweet foods, breads and pasta, red meat, chicken, fish, canned foods, fruits, vegetables, dairy, high-fat foods, I do not know, and no. Only 12.0% (n = 89/744) identified alleviating foods while 32.6% (n = 237/728) identified HS-symptom-exacerbating foods. The most commonly reported exacerbating foods were sweets (67.9%), bread/pasta/rice (51.1%), dairy (50.6%), and high-fat foods (44.2%). The most commonly reported alleviating foods included vegetables (78.7%), fruit (56.2%), chicken (51.7%), and fish (42.7%). Further studies are required to evaluate the mechanistic links between diet and HS. HS patients may benefit from receiving dietary counseling as part of a comprehensive HS management plan.


Assuntos
Hidradenite Supurativa , Animais , Dieta , Frutas , Hidradenite Supurativa/diagnóstico , Humanos , Inquéritos e Questionários , Verduras
9.
Cancer Res ; 79(18): 4703-4714, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31337652

RESUMO

Human prostate cancer confined to the gland is indolent (low-risk), but tumors outside the capsule are aggressive (high-risk). Extracapsular extension requires invasion within and through a smooth muscle-structured environment. Because integrins respond to biomechanical cues, we used a gene editing approach to determine if a specific region of laminin-binding α6ß1 integrin was required for smooth muscle invasion both in vitro and in vivo. Human tissue specimens showed prostate cancer invasion through smooth muscle and tumor coexpression of α6 integrin and E-cadherin in a cell-cell location and α6 integrin in a cell-extracellular matrix (ECM) distribution. Prostate cancer cells expressing α6 integrin (DU145 α6WT) produced a 3D invasive network on laminin-containing Matrigel and invaded into smooth muscle both in vitro and in vivo. In contrast, cells without α6 integrin (DU145 α6KO) and cells expressing an integrin mutant (DU145 α6AA) did not produce invasive networks, could not invade muscle both in vitro and in vivo, and surprisingly formed 3D cohesive clusters. Using electric cell-substrate impedance testing, cohesive clusters had up to a 30-fold increase in normalized resistance at 400 Hz (cell-cell impedance) as compared with the DU145 α6WT cells. In contrast, measurements at 40,000 Hz (cell-ECM coverage) showed that DU145 α6AA cells were two-fold decreased in normalized resistance and were defective in restoring resistance after a 1 µmol/L S1P challenge as compared with the DU145 α6WT cells. The results suggest that gene editing of a specific α6 integrin extracellular region, not required for normal tissue function, can generate a new biophysical cancer phenotype unable to invade the muscle, presenting a new therapeutic strategy for metastasis prevention in prostate cancer. SIGNIFICANCE: This study shows an innovative strategy to block prostate cancer metastasis and invasion in the muscle through gene editing of a specific α6 integrin extracellular region.


Assuntos
Comunicação Celular , Edição de Genes , Integrina alfa6/genética , Neoplasias Musculares/patologia , Neoplasias da Próstata/patologia , Animais , Apoptose , Adesão Celular , Movimento Celular , Proliferação de Células , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Integrina alfa6/química , Integrina alfa6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Musculares/genética , Neoplasias Musculares/metabolismo , Invasividade Neoplásica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Curr Biol ; 27(9): 1381-1386, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28457868

RESUMO

Throughout animals, embryonic cells must ultimately organize into polarized epithelial layers that provide the structural basis for gastrulation or subsequent developmental events [1]. Precisely how this primary epithelium maintains continuous integrity during rapid and repeated cell divisions has never been directly addressed, particularly in cases where early cleavages are driven in synchrony. Representing the early-branching non-bilaterian phylum Cnidaria, embryos of the sea anemone Nematostella vectensis undergo rapid synchronous cell divisions and ultimately give rise to a diploblastic epithelial body plan after gastrulation [2, 3]. Here, using live imaging of apical polarity proteins in Nematostella embryos, we demonstrate that cell polarity is established by the four-cell stage and then reiteratively lost during subsequent mitoses, correlating with transient adhesion disengagement and dramatic deformations of embryonic morphology. Intriguingly, the re-establishment of polarity and adhesion during each interphase is associated with a process of whole-embryo compaction analogous to that observed in mammals [4-7]. Because similar protein dynamics are observed in dividing epithelial cells in Drosophila melanogaster, we propose that cell-cycle-coupled oscillations in apical polarity may be conserved throughout Metazoa.


Assuntos
Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Células Epiteliais/citologia , Morfogênese , Anêmonas-do-Mar/embriologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Ciclo Celular , Polaridade Celular , Células Cultivadas , Drosophila melanogaster/fisiologia , Embrião não Mamífero/fisiologia , Células Epiteliais/fisiologia , Feminino , Anêmonas-do-Mar/fisiologia
11.
PLoS Genet ; 11(8): e1005332, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26241928

RESUMO

Sexual reproduction allows transposable elements (TEs) to proliferate, leading to rapid divergence between populations and species. A significant outcome of divergence in the TE landscape is evident in hybrid dysgenic syndromes, a strong form of genomic incompatibility that can arise when (TE) family abundance differs between two parents. When TEs inherited from the father are absent in the mother's genome, TEs can become activated in the progeny, causing germline damage and sterility. Studies in Drosophila indicate that dysgenesis can occur when TEs inherited paternally are not matched with a pool of corresponding TE silencing PIWI-interacting RNAs (piRNAs) provisioned by the female germline. Using the D. virilis syndrome of hybrid dysgenesis as a model, we characterize the effects that divergence in TE profile between parents has on offspring. Overall, we show that divergence in the TE landscape is associated with persisting differences in germline TE expression when comparing genetically identical females of reciprocal crosses and these differences are transmitted to the next generation. Moreover, chronic and persisting TE expression coincides with increased levels of genic piRNAs associated with reduced gene expression. Combined with these effects, we further demonstrate that gene expression is idiosyncratically influenced by differences in the genic piRNA profile of the parents that arise though polymorphic TE insertions. Overall, these results support a model in which early germline events in dysgenesis establish a chronic, stable state of both TE and gene expression in the germline that is maintained through adulthood and transmitted to the next generation. This work demonstrates that divergence in the TE profile is associated with diverse piRNA-mediated transgenerational effects on gene expression within populations.


Assuntos
Elementos de DNA Transponíveis , Drosophila/genética , RNA Interferente Pequeno/genética , Alelos , Animais , Quimera/genética , Drosophila/metabolismo , Epigênese Genética , Feminino , Expressão Gênica , Genes de Insetos , Masculino , Ovário/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...