Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 154(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323838

RESUMO

As an opportunistic predator, the Burmese python (Python molurus bivittatus) consumes large and infrequent meals, fasting for up to a year. Upon consuming a large meal, the Burmese python exhibits extreme metabolic responses. To define the pathways that regulate these postprandial metabolic responses, we performed a comprehensive profile of plasma metabolites throughout the digestive process. Following ingestion of a meal equivalent to 25% of its body mass, plasma lipoproteins and metabolites, such as chylomicra and bile acids, reach levels observed only in mammalian models of extreme dyslipidemia. Here, we provide evidence for an adaptive response to postprandial nutrient overload by the python liver, a critical site of metabolic homeostasis. The python liver undergoes a substantial increase in mass through proliferative processes, exhibits hepatic steatosis, hyperlipidemia-induced insulin resistance indicated by PEPCK activation and pAKT deactivation, and de novo fatty acid synthesis via FASN activation. This postprandial state is completely reversible. We posit that Burmese pythons evade the permanent hepatic damage associated with these metabolic states in mammals using evolved protective measures to inactivate these pathways. These include a transient activation of hepatic nuclear receptors induced by fatty acids and bile acids, including PPAR and FXR, respectively. The stress-induced p38 MAPK pathway is also transiently activated during the early stages of digestion. Taken together, these data identify a reversible metabolic response to hyperlipidemia by the python liver, only achieved in mammals by pharmacologic intervention. The factors involved in these processes may be relevant to or leveraged for remediating human hepatic pathology.


Assuntos
Boidae , Adaptação Fisiológica , Animais , Boidae/metabolismo , Humanos , Fígado , Mamíferos , Nutrientes , Período Pós-Prandial/fisiologia
2.
Science ; 334(6055): 528-31, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22034436

RESUMO

Burmese pythons display a marked increase in heart mass after a large meal. We investigated the molecular mechanisms of this physiological heart growth with the goal of applying this knowledge to the mammalian heart. We found that heart growth in pythons is characterized by myocyte hypertrophy in the absence of cell proliferation and by activation of physiological signal transduction pathways. Despite high levels of circulating lipids, the postprandial python heart does not accumulate triglycerides or fatty acids. Instead, there is robust activation of pathways of fatty acid transport and oxidation combined with increased expression and activity of superoxide dismutase, a cardioprotective enzyme. We also identified a combination of fatty acids in python plasma that promotes physiological heart growth when injected into either pythons or mice.


Assuntos
Boidae/fisiologia , Ácidos Graxos/metabolismo , Coração/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Transporte Biológico , Boidae/anatomia & histologia , Boidae/genética , Cardiomegalia , Tamanho Celular , Jejum , Ácidos Graxos/sangue , Ácidos Graxos Monoinsaturados/sangue , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos não Esterificados/sangue , Feminino , Regulação da Expressão Gênica , Coração/anatomia & histologia , Coração/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Ácidos Mirísticos/sangue , Ácidos Mirísticos/farmacologia , Oxirredução , Ácido Palmítico/sangue , Ácido Palmítico/farmacologia , Período Pós-Prandial , Biossíntese de Proteínas , Superóxido Dismutase/metabolismo , Triglicerídeos/sangue
3.
Physiol Genomics ; 43(2): 69-76, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21045117

RESUMO

The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as a reference. In addition, we have used RNA-seq analysis to identify differences in the expression of biological processes and signaling pathways between fasted, 1 day postfed (DPF), and 3 DPF hearts. Out of a combined transcriptome of ∼2,800 mRNAs, 464 genes were differentially expressed. Genes showing differential expression at 1 DPF compared with fasted were enriched for biological processes involved in metabolism and energetics, while genes showing differential expression at 3 DPF compared with fasted were enriched for processes involved in biogenesis, structural remodeling, and organization. Moreover, we present evidence for the activation of physiological and not pathological signaling pathways in this rapid, novel model of cardiac growth in pythons. Together, our data provide the first comprehensive gene expression profile for a reptile heart.


Assuntos
Adaptação Fisiológica/genética , Boidae/genética , Boidae/fisiologia , Jejum/fisiologia , Comportamento Alimentar/fisiologia , Perfilação da Expressão Gênica/métodos , Coração/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Pareamento de Bases/genética , Regulação da Expressão Gênica , Humanos , Hipertrofia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mianmar , Miocárdio/metabolismo , Miocárdio/patologia , Período Pós-Prandial/genética , Período Pós-Prandial/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética , Fatores de Tempo
4.
Physiol Genomics ; 32(2): 170-81, 2008 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-17925484

RESUMO

We performed a broadscale screening of differential gene expression using both high-throughput bead-array technology and real-time PCR assay in brown adipose tissue, liver, heart, hypothalamus, and skeletal muscle in hibernating arctic ground squirrels, comparing animals sampled after two durations of steady-state torpor, during two stages of spontaneous arousal episodes, and in animals after they ended hibernation. Significant seasonal and torpor-arousal cycle differences of gene expression were detected in genes involved in glycolysis, fatty acid metabolism, gluconeogenesis, amino acid metabolism, molecular transport, detoxification, cardiac contractility, circadian rhythm, cell growth and apoptosis, muscle dystrophy, and RNA and protein protection. We observed, for the first time, complex modulation of gene expression during multiple stages of torpor-arousal cycles. The mRNA levels of certain metabolic genes drop significantly during the transition from late torpor to early arousal, perhaps due to the rapid turnover of mRNA transcripts resulting from the translational demands during thermogenesis in early arousal, whereas the mRNA levels of genes related to circadian rhythm, cell growth, and apoptosis rise significantly in the early or late arousal phases during torpor-arousal cycle, suggesting the resumption of circadian rhythm and cell cycle during arousal.


Assuntos
Perfilação da Expressão Gênica , Hibernação/genética , Sciuridae/genética , Tecido Adiposo Marrom/metabolismo , Animais , Apoptose/genética , Regiões Árticas , Ciclo Celular/genética , Hipotálamo/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Mol Ecol Resour ; 8(4): 742-52, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21585882

RESUMO

High throughput sequencing methods are widely used in analyses of microbial diversity, but are generally applied to small numbers of samples, which precludes characterization of patterns of microbial diversity across space and time. We have designed a primer-tagging approach that allows pooling and subsequent sorting of numerous samples, which is directed to amplification of a region spanning the nuclear ribosomal internal transcribed spacers and partial large subunit from fungi in environmental samples. To test the method for phylogenetic biases, we constructed a controlled mixture of four taxa representing the Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota. Following cloning and colony restriction fragment length polymorphism analysis, we found no significant difference in representation in 19 of the 23 tested primers. We also generated a clone library from two soil DNA extracts using two primers for each extract and compared 456 clone sequences. Community diversity statistics and contingency table tests applied to counts of operational taxonomic units revealed that the two DNA extracts differed significantly, while the pairs of tagged primers from each extract were indistinguishable. Similar results were obtained using UniFrac phylogenetic comparisons. Together, these results suggest that the pig-tagged primers can be used to increase ecological inference in high throughput sequencing projects on fungi.

6.
Physiol Genomics ; 25(2): 346-53, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16464973

RESUMO

Hibernation is an energy-saving strategy adopted by a wide range of mammals to survive highly seasonal or unpredictable environments. Arctic ground squirrels living in Alaska provide an extreme example, with 6- to 9-mo-long hibernation seasons when body temperature alternates between levels near 0 degrees C during torpor and 37 degrees C during arousal episodes. Heat production during hibernation is provided, in part, by nonshivering thermogenesis that occurs in large deposits of brown adipose tissue (BAT). BAT is active at tissue temperatures from 0 to 37 degrees C during rewarming and continuously at near 0 degrees C during torpor in subfreezing conditions. Despite its crucial role in hibernation, the global gene expression patterns in BAT during hibernation compared with the nonhibernation season remain largely unknown. We report a large-scale study of differential gene expression in BAT between winter hibernating and summer active arctic ground squirrels using mouse microarrays. Selected differentially expressed genes identified on the arrays were validated by quantitative real-time PCR using ground squirrel specific primers. Our results show that the mRNA levels of the genes involved in nearly every step of the biochemical pathway leading to nonshivering thermogenesis are significantly increased in BAT during hibernation, whereas those of genes involved in protein biosynthesis are significantly decreased compared with summer active animals in August. Surprisingly, the differentially expressed genes also include adipocyte differentiation-related protein or adipophilin (Adfp), gap junction protein 1 (Gja1), and secreted protein acidic and cysteine-rich (Sparc), which may play a role in enhancing thermogenesis at low tissue temperatures in BAT.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Expressão Gênica , Hibernação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Alaska , Animais , Conexinas/genética , Conexinas/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Membrana , Camundongos , Osteonectina/genética , Osteonectina/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Perilipina-2 , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Sciuridae , Estações do Ano , Termogênese/genética
7.
Genome Res ; 15(3): 369-75, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15741508

RESUMO

Alternative initiation, splicing, and polyadenylation are key mechanisms used by many organisms to generate diversity among mature mRNA transcripts originating from the same transcription unit. While previous computational analyses of alternative polyadenylation have focused on polyadenylation activities within or downstream of the normal 3'-terminal exons, we present the results of the first genome-wide analysis of patterns of alternative polyadenylation in the human, mouse, and rat genomes occurring over the entire transcribed regions of mRNAs using 3'-ESTs with poly(A) tails aligned to genomic sequences. Four distinct classes of patterns of alternative polyadenylation result from this analysis: tandem poly(A) sites, composite exons, hidden exons, and truncated exons. We estimate that at least 49% (human), 31% (mouse), and 28% (rat) of polyadenylated transcription units have alternative polyadenylation. A portion of these alternative polyadenylation events result in new protein isoforms.


Assuntos
Processamento Alternativo , Etiquetas de Sequências Expressas , Animais , Humanos , Lamina Tipo A/genética , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...