Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Behav ; 79: 213-224, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29346088

RESUMO

There are reports of patients whose epileptic seizures are prevented by means of olfactory stimulation. Similar findings were described in animal models of epilepsy, such as the electrical kindling of amygdala, where olfactory stimulation with toluene (TOL) suppressed seizures in most rats, even when the stimuli were 20% above the threshold to evoke seizures in already kindled animals. The Wistar Audiogenic Rat (WAR) strain is a model of tonic-clonic seizures induced by acute acoustic stimulation, although it also expresses limbic seizures when repeated acoustic stimulation occurs - a process known as audiogenic kindling (AK). The aim of this study was to evaluate whether or not the olfactory stimulation with TOL would interfere on the behavioral expression of brainstem (acute) and limbic (chronic) seizures in the WAR strain. For this, animals were exposed to TOL or saline (SAL) and subsequently exposed to acoustic stimulation in two conditions that generated: I) acute audiogenic seizures (only one acoustic stimulus, without previous seizure experience before of the odor test) and II) after AK (20 acoustic stimuli [2 daily] before of the protocol test). We observed a decrease in the seizure severity index of animals exposed only to TOL in both conditions, with TOL presented 20s before the acoustic stimulation in both protocols. These findings were confirmed by behavioral sequential analysis (neuroethology), which clearly indicated an exacerbation of clusters of specific behaviors such as exploration and grooming (self-cleaning), as well as significant decrease in the expression of brainstem and limbic seizures in response to TOL. Thus, these data demonstrate that TOL, a strong olfactory stimulus, has anticonvulsant properties, detected by the decrease of acute and AK seizures in WARs.


Assuntos
Estimulação Acústica , Excitação Neurológica/fisiologia , Sistema Límbico/fisiologia , Convulsões , Olfato/efeitos dos fármacos , Tolueno/farmacologia , Tonsila do Cerebelo , Animais , Tronco Encefálico , Modelos Animais de Doenças , Epilepsia Reflexa , Masculino , Ratos , Ratos Wistar
2.
PLoS One ; 9(7): e99284, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036025

RESUMO

INTRODUCTION: The central nucleus of amygdala plays an important role mediating fear and anxiety responses. It is known that oxytocin microinjections into the central nucleus of amygdala induce hypergrooming, an experimental model of compulsive behavior. We evaluated the behavioral and cardiorespiratory responses of conscious rats microinjected with oxytocin into the central nucleus of amygdala. METHODS: Male Wistar rats were implanted with guide cannulae into the central nucleus of amygdala and microinjected with oxytocin (0.5 µg, 1 µg) or saline. After 24 h, rats had a catheter implanted into the femoral artery for pulsatile arterial pressure measurement. The pulsatile arterial pressure was recorded at baseline conditions and data used for cardiovascular variability and baroreflex sensitivity analysis. Respiratory and behavioral parameters were assessed during this data collection session. RESULTS: Microinjections of oxytocin (0.5 µg) into the central nucleus of amygdala produced hypergrooming behavior but did not change cardiorespiratory parameters. However, hypergrooming evoked by microinjections of oxytocin (1 µg) into the central nucleus of amygdala was accompanied by increase in arterial pressure, heart rate and ventilation and augmented the power of low and high (respiratory-related) frequency bands of the systolic arterial pressure spectrum. No changes were observed in power of the low and high frequency bands of the pulse interval spectrum. Baroreflex sensitivity was found lower after oxytocin microinjections, demonstrating that the oxytocin-induced pressor response may involve an inhibition of baroreflex pathways and a consequent facilitation of sympathetic outflow to the cardiovascular system. CONCLUSIONS: The microinjection of oxytocin (1 µg) into the central nucleus of amygdala not only induces hypergrooming but also changes cardiorespiratory parameters. Moreover, specific oxytocin receptor antagonism attenuated hypergrooming but did not affect pressor, tachycardic and ventilatory responses to oxytocin, suggesting the involvement of distinct neural pathways.


Assuntos
Núcleo Central da Amígdala/efeitos dos fármacos , Comportamento Compulsivo/fisiopatologia , Asseio Animal/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Ocitocina/farmacologia , Respiração/efeitos dos fármacos , Animais , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Núcleo Central da Amígdala/fisiologia , Asseio Animal/fisiologia , Hemodinâmica/fisiologia , Masculino , Microinjeções , Ocitocina/administração & dosagem , Ratos , Ratos Wistar , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/fisiologia , Sistema Nervoso Simpático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...