Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 324(1): H129-H140, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459449

RESUMO

Cardiac reserve is a widely used health indicator and prognostic tool. Although it is well established how to assess cardiac reserve clinically, in preclinical models, it is more challenging lacking standardization. Furthermore, although cardiac reserve incorporates both systolic (i.e., contractile reserve) and diastolic (i.e., relaxation reserve) components of the cardiac cycle, less focus has been placed on diastolic reserve. The aim of our study was to determine which technique (i.e., echocardiography, invasive hemodynamic, and Langendorff) and corresponding parameters can be used to assess the systolic and diastolic reserves in preclinical models. Healthy adult male and female CD-1 mice were administered dobutamine and evaluated by echocardiography and invasive hemodynamic, or Langendorff to establish systolic and diastolic reserves. Here, we show that systolic reserve can be assessed using all techniques in vivo and in vitro. Yet, the current indices available are ineffective at capturing diastolic reserve of healthy mice in vivo. When assessing systolic reserve, sex affects the dose response of several commonly used echocardiography parameters [i.e., fractional shortening (FS), ejection fraction (EF)]. Taken together, this study improves our understanding of how sex impacts the interpretation assessment of cardiac reserve and establishes for the first time that in healthy adult mice, the diastolic reserve cannot be assessed by currently established methods in vivo.NEW & NOTEWORTHY Cardiac reserve is a globally used health indicator and prognostic tool that is used by clinicians and preclinical scientists. In physiology, we have a long-standing appreciation of how to assess systolic reserve but lack insight into sex differences and have no frame of reference for measuring diastolic reserve to certainty across cardiac techniques or the influence of sex. Here, we show that the primary means for assessing diastolic reserve is incorrect. Furthermore, we provided proof and clarity on how to correctly measure systolic and diastolic reserve capacities. We also highlight the imperative of sex differences to the measures of both systolic and diastolic reserves using several techniques (i.e., echocardiography, invasive hemodynamics, and Langendorff) in mice.


Assuntos
Ecocardiografia , Coração , Masculino , Feminino , Animais , Camundongos , Diástole/fisiologia , Sístole , Ecocardiografia/métodos , Hemodinâmica , Volume Sistólico
2.
Eur J Sport Sci ; 20(5): 633-640, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31429381

RESUMO

PURPOSE: To use repeated control trials to measure within-subject variability and assess the existence of responders to ischemic preconditioning (IPC). Secondly, to determine whether repeated IPC can evoke a dosed ergogenic response. METHODS: Twelve aerobically fit individuals each completed three control and three IPC 5-km cycling time trials. IPC trials included: (i) IPC 15-min preceding the trial (traditional IPC), (ii) IPC 24-h and 15-min preceding (IPC × 2), (iii) IPC 48-h, 24-h, and 15-min preceding (IPC × 3). IPC consisted of 3 × 5-min cycles of occlusion and reperfusion at the upper thighs. To assess the existence of a true response to IPC, individual performance following traditional IPC was compared to each individual's own 5-km TT coefficient of variation. In individuals who responded to IPC, all three IPC conditions were compared to the mean of the three control trials (CONavg) to determine whether repeated IPC can evoke a dosed ergogenic response. RESULTS: 9 of 12 (75%) participants improved 5-km time (-1.8 ± 1.7%) following traditional IPC, however, only 7 of 12 (58%) improved greater than their own variability between repeated controls (true responders). In true responders only, we observed a significant mean improvement in 5-km TT completion following traditional IPC (478 ± 50 s), IPC × 2 (481 ± 51 s), and IPC × 3 (480.5 ± 49 s) compared to mean CONavg (488 ± 51s; p < 0.006), with no differences between various IPC trials (p > 0.05). CONCLUSION: A majority of participants responded to IPC, providing support for a meaningful IPC-mediated performance benefit. However, repeated bouts of IPC on consecutive days do not enhance the ergogenic effect of a single bout of IPC.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Precondicionamento Isquêmico , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...