Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 76(1 Pt 1): 351-9, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9876147

RESUMO

Proton decoupled deuterium NMR spectra of oriented bilayers made of DMPC and 30 mol % deuterated cholesterol acquired at 76.8 MHz (30 degreesC) have provided a set of very accurate quadrupolar splitting for eight C-D bonds of cholesterol. Due to the new precision of the experimental data, the original analysis by. Biochemistry. 23:6062-6071) had to be reconsidered. We performed a systematic study of the influence on the precision and uniqueness of the data-fitting procedure of: (i) the coordinates derived from x-ray, neutron scattering, or force field-minimized structures, (ii) internal mobility, (iii) the axial symmetry hypothesis, and (iv) the knowledge of some quadrupolar splitting assignments. Good agreement between experiment and theory could be obtained only with the neutron scattering structure, for which both axial symmetry hypothesis and full order parameter matrix analysis gave satisfactory results. Finally, this work revealed an average orientation of cholesterol slightly different from those previously published and, most importantly, a molecular order parameter equal to 0.95 +/- 0.01, instead of 0.79 +/- 0.03 previously found for the same system at 30 degreesC. Temperature dependence in the 20-50 degreesC range shows a constant average orientation and a monotonous decrease of cholesterol Smol, with a slope of -0.0016 K-1. A molecular order parameter of 0.89 +/- 0.01 at 30 degreesC was determined for a DMPC/16 mol % of cholesterol.


Assuntos
Colesterol/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Fenômenos Biofísicos , Biofísica , Deutério , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Termodinâmica
2.
Biophys Chem ; 75(1): 45-55, 1998 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17027456

RESUMO

Neutron scattering experiments have been performed on oriented Soybean phosphatidylcholine (SPC) bilayers, containing sitosterol or stigmasterol, two major sterols of plant plasma membranes. Sitosterol and stigmasterol were either protonated or deuterated on position C25 of the lateral chain. Incorporation of sitosterol leads to an increase of the hydrophobic thickness of SPC bilayers of 1.2 and 2 A when present, at 16 and 30 mol%, respectively. On the other hand, no change was observed when stigmasterol is present in the bilayer at its maximal solubility of 16 mol%. These results are in agreement with the fact that sitosterol is more efficient than stigmasterol to order acyl chains of SPC, as already shown with other biophysical techniques. In order to get more insight into the behavior of the lateral chains of the two sterols, the proton-deuterium contrast method was used in order to locate the (2)H25 atoms of the two sterols. For sitosterol, this atom was found close to the center of the bilayer at +/-(1.6+/-0.2 A), with a width, nu=2.5+/-0.5 A. For stigmasterol, the difference profile could be fitted in two different ways: either two possible locations are found at +/-(2.3+/-0.2 A) and +/-(10+/-0.2 A) with the same width, nu=2.5+/-0.5 A or only one broad distribution at +/-(6.1+/-0.3 A), nu=8.5+/-0.7 A. The results are discussed in terms of difference of dynamics for the lateral chain of the two sterols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...